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Abstract—Mobile artificial intelligence-generated content
(AIGC) refers to the adoption of generative artificial intelligence
(GAI) algorithms deployed at mobile edge networks to automate
the information creation process while fulfilling the requirements
of end users. Mobile AIGC has recently attracted phenomenal
attentions and can be a key enabling technology for an emerging
application, called human digital twin (HDT). HDT empowered
by the mobile AIGC is expected to revolutionize the personalized
healthcare by generating rare disease data, modeling high-
fidelity digital twin, building versatile testbeds, and providing
24/7 customized medical services. To promote the development
of this new breed of paradigm, in this article, we propose a
system architecture of mobile AIGC-driven HDT and highlight
the corresponding design requirements and challenges. Moreover,
we illustrate two use cases, i.e., mobile AIGC-driven HDT
in customized surgery planning and personalized medication.
In addition, we conduct an experimental study to prove the
effectiveness of the proposed mobile AIGC-driven HDT solution,
which shows a particular application in a virtual physical therapy
teaching platform. Finally, we conclude this article by briefly
discussing several open issues and future directions.

I. INTRODUCTION
A. Mobile AIGC-Driven Human Digital Twin

Uman digital twin (HDT), as a recently defined con-
cept, is expected to characterize the replication of an
individual human body in the virtual space, while reflecting
its physical status both psychologically and physiologically in
real-time [1]. The corresponding virtual entity is called virtual
twin (VT), while the physical one is called physical twin
(PT). HDT is poised to revolutionize personalized healthcare
through its unparalleled capabilities, such as acting as ultra-
realistic, human-like, and versatile testbeds, as well as con-
tinuously and pervasively monitoring and predicting medical
conditions. However, the successful implementation of HDT
in personalized healthcare hinges on the utilization of vast
amounts of multi-modal data.
Obviously, acquiring such large amounts of data as the input
for HDT can be significantly challenging especially when
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it comes to the individual-level. Traditional data collection
methods [2] are often difficult to be personalized and scaled,
particularly within the healthcare realm due to the high privacy
of medical records. Fortunately, the cutting-edge technology,
generative artificial intelligence (GAI) [3], which has the
abilities of creatively generating, manipulating, and modifying
valuable and diverse data, producing artificial intelligence-
generated content (AIGC), can be a promising solution for
powering up HDT in personalized healthcare. Considering that
the healthcare services typically need to be timely, pervasive
and uninterrupted, in this article, we investigate the deploy-
ment of GAI at mobile edge networks for HDT. Fueling with
AIGC, this paradigm is thus referred to as mobile AIGC-driven
HDT, aiming to provide low-latency and interaction-intensive
personalized healthcare services.

1) Generating Rare Data for HDT Utilizing Mobile
AIGC: Traditional data collection methods in HDT for
personalized healthcare applications is commonly time-
consuming, costly or invasive, especially when dealing
with hard-to-reach populations or rare diseases that may
affect a small subset of the population. Mobile AIGC-
driven data generation can overcome such a data scarcity
issue by generating massive synthetic data based on
statistical characteristics and patterns of the collected
rare data. For instance, NVIDIA has unveiled a new
multi-modal (CT/MR/ultrasound) generative Al recently,
called RadImageGAN, for generating medical data with
considerably small amounts of real ones'.

2) Modeling High-Fidelity HDT Utilizing Mobile AIGC:
Traditional digital modeling technologies may fall short
of meeting the stringent requirements of HDT. In par-
ticular, data-based modeling technologies, such as point-
cloud modeling, require extensive individual-level data
to create human digital structures. However, it may
lack generality despite the high level of accuracy. For
example, by this way, modeling viral proteins for typical
viruses with abundant historical data is easily achiev-
able, but modeling rare ones becomes much more chal-
lenging. Conversely, model-based technologies, such as
computer-aided design (CAD), highly rely on strict as-
sumptions, which may experience low accuracy despite
the generality. mobile AIGC can well balance these two
metrics due to its strong ability in both data generation
and analysis. For instance, BioMap recently launched an
Al generated protein platform which can produce cus-
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tomized protein by exploiting high-dimensional data and
high-performance biological operation mechanisms?. It
is worth noting that the implementation of such large-
scale mobile AIGC models originally require high-
intensive computing capacities and fast-responsive out-
come feedbacks. These can hardly be fulfilled by only
local devices with limited resources or remote clouds in
far distance, and thus necessitating the deployment of
mobile AIGC supporting by the collaboration of clouds,
edge servers and even the local devices.

3) Mobile AIGC-driven HDT for Personalized Versatile
Testbed: Mobile AIGC-driven HDT is envisioned to
serve as a versatile testbed for healthcare applications,
such as personalized treatment planning. Specifically,
multiple candidate treatments can be tested on HDT to
identify the best-performing one before actual treating.
These scenarios require massive multi-modal feedbacks,
such as haptic and drug reactions, for providing human-
like responses. Mobile AIGC has the potential to help
generate those responses. For instance, HaptX, is cur-
rently working towards realizing tactile Internet by using
mobile AIGC to generate haptic signals (e.g., haptic
feedbacks in physical therapy and virtual surgery)’.
Additionally, Evozyne and NVIDIA are collaborating
to predict and simulate the interactions of drugs in the
human body using mobile AIGC*. For enabling doctors,
pharmacists and patients to interact with HDT for per-
forming personalized testbed functions at anytime and
anywhere, deploying GAI at mobile edge networks is
also necessary for guaranteeing seamless connectivities.

4) Mobile AIGC-driven HDT for 24/7 Customized
Healthcare Services: Mobile AIGC-driven HDTs of
doctors deploying at mobile edge networks can be
trained and served as personal 24/7 doctors for patients.
By leveraging mobile AIGC, HDTs of doctors can
be empowered with expert-level medical knowledge,
providing tailored healthcare services for anybody on
demand. For example, Google’s ongoing research on
Med-PalLM utilizes expert-level medical large language
models to accurately and safely answer medical ques-
tions>. In the coming future, mobile AIGC-driven HDTs
are expected to offer immersive healthcare through gen-
erating multi-modal information in the form of not only
text but also audio, video and haptic. In this regard,
patients can obtain customized medical services while
having both indoor and outdoor activities.

B. Related Work and Contributions

Both HDT and mobile AIGC have recently attracted a myr-
iad of attentions. For example, Okegbile et al. in [1] defined a
general HDT framework, along with key design requirements
and corresponding technologies. Chen et al. in [4] clarified and
surveyed the enabling technologies of HDT in the perspective
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of networking. Taylor et al. in [3] provided a general overview
of mobile AIGC, discussing its direct applications including
image, video and text synthesis. Inspired by this pioneering
work, Alamir et al. in [5] delved into studying generative
adversarial networks (GANSs) in medical image analysis, while
Kazerouni et al. in [6] surveyed applications of diffusion
models in the medical community. However, none of existing
work recognized the potential of mobile AIGC in empowering
HDT for the revolution of healthcare.

This motivates us to compose this article that particularly
discusses how HDT can be further enabled by mobile AIGC in
personalized healthcare. The main contributions of this article
are summarized as follows.

o We are the first to propose a holistic system architecture
of mobile AIGC-driven HDT, along with its lifecycle,
including data collection, data management, pre-training,
fine-tuning, and inference, which can provide insights
into the practical implementation.

o We analyze key design requirements and challenges of
mobile AIGC-driven HDT in personalized healthcare,
which can guide a roadmap for the realization.

o We illustrate two use cases of mobile AIGC-driven HDT
in personalized healthcare. We also conduct a case study
of mobile AIGC-driven HDT in a virtual physical therapy
teaching platform as a preliminary exploration.

o We conclude this article by discussing some open issues
to inspire future research directions.

II. FRAMEWORK OF MOBILE AIGC-DRIVEN HDT IN
PERSONALIZED HEALTHCARE

A. System Architecture and Key Techniques

The system architecture of mobile AIGC-driven HDT con-
sists of the mobile device layer, edge layer and cloud layer,
as shown in Fig. 1. Besides, the timeline of major technical
developments for supporting this architecture is also attached
in this figure. The lifecycle of mobile AIGC-driven HDT, in-
cluding data collection, management, pre-training, fine-tuning
and inference, is circulated among the core and edge networks,
and is elaborated as follows.

1) Data Collection: Data collection is a critical initial step
in mobile AIGC-driven HDT, which is basically carried out by
the mobile device layer. The collected data used to train mobile
AIGC models directly influence the patterns and relationships
that models can learn, and therefore impact the performance in
particular applications. For example, electronic health records
(EHR) are important training datasets for mobile AIGC-driven
HDT [3]. However, EHR datasets are generally confined to
specific hospital systems and cannot capture all different kinds
of samples, hence limiting the availability of sufficient rare dis-
ease patients in the dataset. To this end, administrative claims
datasets with wider patient samples can be an alternative to
train a transformer-based model for rare disease diagnosis
[7]. Except collecting data from these public datasets, the
personalization of mobile AIGC-driven HDTs requires data
collected from mobile PT themselves. It is generally real-
ized by pervasive sensing using smart biomedical devices,
including wearable and implantable devices, for gathering



Data Center

GLJ 1 l’
> | . _ |:{>:
@©
- : Datasets :
3 g GAN

i - GAN O VAE ) __ Generative
o | 3

]
o 1Data Management

! Data Security and Privacy

T T T s s VT it e T T T
i . 1 Distributed Ledger 1

i _Cybersecurily |\ _ __Technology __ _Jf-

1 > Data Center
o ! Data Storage
%‘ !l Hadoop Distributed \ I{ OpenStack | N
— |\__ FileSystem ___t. __ Swift___)| *
N Eiy %

1 . < ©
o Data Pre-Processing NS

______________________ R

w i |{ Data 1 Data . |{ Data | v

| Cleaning '\ _Reduction _11__Fusion_ ! Data Center

Medical Image

HDT Task ]

___________ Evolution
Modeling :

1

1

= 1

e 1

1

__________ % Generated |
Generated 3D Model !

|

1

E cr

1
1
1
1
:
New Data :
1
1
1
1
I
1
1
1

fo ©
[

% AIGC Inference

Edge
Networks

AN

_____ 1
o Migration @6@ % \ v Candidate Healthcare |
0 A == A %, Server Inference I:> Treatment  Query !
q>J o R % Support Q !
Q g — -»@0“2‘@ Dy Postural ®) e % ]
O © ; .7-\ |:.'> [ 1
= - ot g Mobility ii’ = Testbed  24/7 Healthcare |
o - h < . . Service !
P — L _ _ &= Mcl’b;'e DENLED Personalized !
|Social Media Network PervasveSensing . ____________ ! e Healthcare |
(LT TTTTTTTTTT T T o T T T e e e e e e m e m ST TTTTTTTTTT T T T m e 1
— , Digital Twin Human Digital Twin |

Y— | o 3 TePeTlrg ) Transformer . ’ S )
(] (Michael Grieves. “Digital twin: manufacturing q g g q ” (Samuel D. Okegbile, et al. “Human digital twin for personalized 1
8 5 : excellence through virtual factory replication.”) (Asfffl\/_aiw_arll,_el_a‘l. RilenipEElvoutes ) healthcare: Vision, architecture and future directions.”) 1
1 &= L O it 5 !
£0! I p | o o ]
° c i 2014 ! 2017 2020 | 2022 2023 | i
! - ——— - = 1
E [&] : LA o &Tmmmmmmme e Mobile Atrtificial Intelligence-Generated Content 1
i= O, Generative Adversarial Networks Denoising Diffusion Probabilistic Models (Xu Minrui, et al. “Unleashing the power of edge-cloud generative Al 1
l_ l— | (lan J. Goodfellow, et al. “Generative adversarial nets.”) (Jonathan Ho, et al. “Generative adversarial nets.”) in mobile networks: A survey of AIGC services.”) 1

Fig. 1. The system architecture of mobile AIGC-driven HDT in personalized healthcare, including the mobile device, edge and cloud layers, attached with the
timeline of major technical developments. All these support the mobile AIGC-driven HDT lifecycle, i.e., data collection, management, pre-training, fine-tuning

and inference.

dynamic electroencephalographic (EEG), electrocardiograms
(ECG), and biomarkers signals, among others [4]. Addition-
ally, social networks can be utilized as a psychology-related
data source for aiding the establishment of mobile AIGC-
driven HDT.

2) Data Management: Data from both physical and virtual
spaces, including collected data, data generated by AIGC
models, simulation data, historical data, etc., are large-scaled
and complex. Thus, efficient and reliable data management
is indispensable. First, data from each segment should go
through pre-processing phase. For instance, diffusion models
and GAN have been applied to pre-process medical data,
including image-to-image translation, reconstruction, registra-
tion, classification, segmentation and denoising [5], [6]. Then,
these pre-processed data need to be stored robustly using
big data storage frameworks for AIGC model training, data
sharing, etc. Moreover, the data in mobile AIGC-driven HDT
are highly sensitive. Any leakage of these data may result in
serious ethical and moral concerns.

3) AIGC Pre-training: The collected data are used to train
AIGC models after being processed by data management.
AIGC pre-training is typically done by central servers with

powerful computing power at the cloud layer. During training,
the generative models, such as GANs [5], variational autoen-
coder (VAE) [8], and generative diffusion models [6], can
automatically learn features of the collected data. Note that,
the selection of a specific GAI technology depends on various
factors, including the requirements of tasks, the amount of
data, desired output and available resources. For instance,
generative diffusion models can learn the inverse diffusion
process to produce new medical images from the artificially
added noises, and because of the strong mode coverage and
high quality of the generated content, they become popular in
medical image synthesis [6].

4) AIGC Fine-tuning: AIGC fine-tuning is the process of
adjusting a pre-trained AIGC model to new tasks, e.g., gen-
erating synthetic magnetic resonance imaging (MRI) for rare
diseases, by utilizing a modest amount of data. This approach
can be applied to enhance the model’s performance on given
tasks, such as HDT modeling and personalized healthcare
services, by slightly modifying Al model’s parameters to suit
the new data. In mobile networks, AIGC fine-tuning can
be performed at the cloud or edge layer, using the datasets
collected from mobile devices and meticulously processed by



the data management.

5) AIGC Inference: Based on the trained AIGC models,
inference is mainly to generate the desired content according
to the input. Since inference commonly requires much less
computing power compared to the pre-training, it is expected
to install AIGC inference on edge servers, or mobile devices
directly to provide low-latency and private AIGC services.
The contents generated by AIGC models can be used to
support HDT tasks in personalized healthcare. For example,
generating medical images and 3D models can facilitate HDT
modeling and evolution, while the generated responses can
enable testbed functions and ubiquitous medical services [8].

B. Key Design Requirements and Challenges

The key design requirements and major challenges of imple-
menting mobile AIGC-driven HDT in personalized healthcare
are discussed as follows.

1) Personalized and Adaptive Self-evolution of Mobile
AIGC-driven HDT: To keep synchronized between each PT-
VT pair, mobile AIGC-driven HDT needs to be real-time self-
evolved once the status of the PT is changed according to
the collected data. Such a process is intuitively personalized
because the characteristics of each PT-VT pair are totally dif-
ferent. Moreover, it is also adaptive because this process highly
depends on the available resources, including computational
and communication resources, data accessibility, etc. In the
following, we outline several critical points related to this.

Adaptive Computing and Networking Resource Orches-
tration for Heterogeneous Tasks: Heterogencous AIGC-
driven HDT tasks in mobile networks may have different
quality of service (QoS) requirements, such as accuracy,
inference latency and model size, thereby demanding different
amounts of computing and networking resources. Additionally,
as the natural progression of human lifecycle continues, AIGC
models will become increasingly sophisticated, leading to an
exponential increase in the number of parameters and com-
putational complexity (e.g., RadlmageGan is usually trained
on 8 NVIDIA A100 GPUs for more than 768800 hours).
Moreover, the high mobility of AIGC-driven HDT users results
in varying computing and networking resource demands across
locations. All these pose great challenges for unified resource
management, including measuring, perceiving, and adaptively
allocating computing and networking resources. One potential
solution may be utilizing network slicing-based resource al-
location for fulfilling various mobile AIGC-driven HDT tasks
with multi-objectives.

Timely Data Collection, Generation and Integration for
Dynamic Fine-Tuning: The dynamic fine-tuning of mobile
AIGC-driven HDT for personalized self-evolution requires the
timely data collection, generation and integration. On one
hand, the variation of human body will generate new data,
and these data should be transmitted to the edge servers and
integrated timely for AIGC models’ fine-tuning, such that
AIGC models can be updated and evolved synchronously [4].
On the other hand, the fine-tuned AIGC models in HDT
should generate latest synthesis rare disease-related data for
amplifying the training datasets, and further promoting the

fine-tuning of the disease-related models. Such dynamic fine-
tuning may require the support of 6G communications and
time-sensitive network.

Pervasive Connectivity for Ubiquitous Mobility: The
highly complex mobility patterns of end users in mobile
AIGC-driven HDT pose several unique requirements and chal-
lenges for adaptive self-evolution of the system. Specifically,
these patterns can be categorized into human positional and
postural mobility. Positional mobility, like a person moving
from indoor to outdoor, may cause radio frequency (RF)
propagation characteristics to change and even the service
migrations, and thereby, leading to signal fading among other
extra network overheads. Additionally, different from other
mobile terminals, the postural mobility of a person, like lying,
sitting, walking, may cause signal strength to fluctuate due to
the influence of human bodies on the path loss, known as body
shadowing, leading to service interruptions or packet loss.
These factors can impact the reliability, stability, security, and
cost of model self-evolution for mobile AIGC-driven HDT.
To address these issues, future networking techniques are
expected to be designed with the goal of providing pervasive
connectivity, so that enormous data traffics between virtual and
physical spaces can be unimpededly circulated.

2) Customized and Multi-modal Intelligent-interaction of
Mobile AIGC-driven HDT: Mobile AIGC-driven HDT can
disruptively act as personalized versatile testbeds and personal
24/7 doctors. In this regard, VTs can generate customized
feedbacks adhering to their corresponding PTs for users (e.g.,
doctors, pharmacists, and patients). In addition, users can gain
immersive experience by utilizing multi-modal interactions,
such as audio, video and touch, while engaging with the VTs in
the virtual scenes (e.g., surgery). In the following, we outline
several critical points related to this.

Multi-modal Data Processing and Transmission in Im-
mersive Interaction: With the versatile functions of mobile
AIGC-driven HDT, the data collected, processed, and gener-
ated in such a system are typically multi-modal, including
auditory, visual and haptic signals, such as in the application
of immersive rehabilitation. The processing and transmission
of such multi-modal data introduce several open issues. Firstly,
multi-modal encoding schemes must be properly defined.
Although auditory and visual data encoding has been studied
extensively, haptic encoding is still very challenging [9].
Secondly, the transmission of auditory, visual, and haptic data
during feedback results in multiple data streams that should
be synchronized to avoid motion sickness. For example, the
time interval between perceived visual and tactile movement
should not exceed 1 ms [9]. Besides, the requirements of data
transmissions in mobile AIGC-driven HDT depend on differ-
ent healthcare applications. For instance, in surgery simulation,
auditory, visual and haptic data need to be delivered within
an end-to-end latency < 1 ms and with an extremely high
reliability > 99.999999%, while immersive virtual outpatient
service requires the video signals to be transmitted with an
air latency 0.5 — 2 ms, and a reliability > 99.999%, but the
audio and haptic signals only need to be transmitted with a
reliability > 99.9% [9].

Data Privacy, Security and Integrity with Ethics and



Morality: Massive data will be transmitted and exchanged
between PTs and VTs in mobile AIGC-driven HDT. Any
leakage of these data may result in serious ethical and moral
concerns. Note that, for training large-scale AIGC models,
decentralized computing techniques are commonly employed
to distribute the data across multiple computing nodes to
relive the operation pressure [3]. However, during this process,
if appropriate data privacy, security, integrity, and availabil-
ity schemes are not taken, attackers may obtain data by
eavesdropping the network traffics and maliciously attacking
computing nodes. Therefore, a series of privacy, security and
integrity techniques, such as differential privacy, secure multi-
party computation, and homomorphic encryption, should be
designed and implemented for mobile AIGC-driven HDT in
personalized healthcare applications.

Integration of Subjective and Objective Evaluations in
Personalized Healthcare Application: Different from the
conventional network systems, mobile AIGC-driven HDT re-
quires both subjective and objective metrics to evaluate the
performance, including not only the AIGC models’ infer-
ence and feedback latency, reliability of communication and
computation, but also the experience and perception of users
in interactions. The subjective measures of contents (e.g.,
healthcare dialogues, images and videos) generated by AIGC
models are important metrics to aid models’ performance
promotion, especially for personalized AIGC models. For
example, although tools like ChatGPT is capable of gener-
ating content that usually appears or sounds reasonable, they
are often unreliable in terms of factuality. Thus, subjective
knowledge and expertise from healthcare professionals should
be introduced to reassess the results. However, it is difficult
to design integrated evaluation methods that can jointly cap-
ture both subjective and objective aspects, as it may involve
interdisciplinary knowledge and complex models.

III. APPLICATION OF MOBILE AIGC-DRIVEN HDT IN
PERSONALIZED HEALTHCARE

A. Mobile AIGC-driven HDT in Customized Surgery Planning

One of the potential applications of mobile AIGC-driven
HDT in personalized healthcare is customized surgery plan-
ning. For example, as shown in Fig. 2 (a), through the use
of high-fidelity 3D models of the heart (e.g., 3D mitral valve
apparatus) in VT, physicians can comprehend the morphol-
ogy, distribution, and vascular pathways of lesions, thereby
empowering them to develop more individualized and precise
treatment plans. The accuracy of VT modeling is pivotal in
ensuring the effectiveness of customized surgery planning,
which, in turn, depends heavily on the quality of segmented
medical imaging data. However, due to high privacy of medical
data and difficulty of data annotation, existing labeled datasets
typically have limited scale, thereby leading to the challenge
of training segmentation models with high accuracy and strong
generalization ability [2].

Fortunately, synthesis datasets generated by AIGC models
for expanding the training datasets has proven to be a promis-
ing solution®. For instance, Subramaniam et al. in [10] applied
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Fig. 2. Use cases of mobile AIGC-driven HDT in personalized healthcare.

WGAN to generate 3D Time-of-Flight Magnetic Resonance
Angiography (TOF-MRA) patches with their corresponding
brain blood vessel segmentation labels, eliminating the need
for manual annotation and the possibility of privacy leakage.
Except for data synthesis, mobile AIGC-driven HDT can aid
customized surgery planning through image reconstruction
and data augmentation. For example, Song et al. in [11]
leveraged the score-based model to reconstruct images from
sparse-view lung CT and undersampled brain tumor MRI for
producing high-quality medical images in surgery planning.
Uemura et al. in [12] developed a flow-based generative
model for performing 3D data augmentation of colorectal
polyps for effective training of deep learning in computer-
aided detection (CADe) for CT colonography. Both these
approaches substantially improved the performance of the
customized surgery. Furthermore, due to the demand of strong
interactions in such surgery planning, it is expected to deploy
the inference segment of mobile AIGC-driven HDT at the edge
of networks for providing real-time immersive experiences.

B. Mobile AIGC-driven HDT in Personalized Medication

With the excellent simulation capability and creativity,
mobile AIGC-driven HDT can serve as a hyper-realistic and
hyper-intelligent testbed for optimizing physical fitness. As
shown in Fig. 2 (b), doctors can prescribe medication by
virtually testing various possible prescriptions on the patient’s
VT. The AIGC models in HDT will then generate simulations
of the metabolic processes, efficacy, and toxic side effects of
drugs at different doses or drugs in the patient’s body based



TABLE I
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on its unique conditions’. By analyzing the simulation results
from mobile AIGC-driven HDT, doctors can further optimize
patient treatment plans, taking into account factors such as
slower metabolism or excessive reactions to certain drugs due
to genetic factors.

In this regard, Jarada et al. in [8] proposed a VAE-based
approach to predict drug-disease interaction of drug candi-
dates for potentially treating Alzheimer’s disease and Juvenile
rheumatoid arthritis. Apart from testing candidate prescrip-
tions, mobile AIGC-driven HDT can also aid personalized
medication through diagnosing rare diseases and anomaly
detection, which can largely improve the efficiency and ef-
fectiveness of personalized medication. For example, Prakash
et al. in [7] devised a transformer-based approach, called
RareBERT, aiming to diagnose rare disease, e.g., X-linked
hypo-phosphatemia (XLH). Wyatt et al. in [13] developed a
novel diffusion model-based anomaly detection strategy for
brain tumor MRI. Based on these, patients themselves may
access mobile AIGC-driven HDTs deployed at the edge to
obtain timely and customized healthcare services 24/7, no
matter where they are and what they are doing. All these
ultimately facilitating the personalized medication.

For clarity, Table I provides a brief survey summarizing
different applications of mobile AIGC-driven HDT in person-
alized healthcare realm.

IV. A CASE STUDY OF MOBILE AIGC-DRIVEN HDT IN
PERSONALIZED HEALTHCARE

A. Experimental Setup and System Design

As shown in Fig. 3, we build a virtual physical therapy
teaching platform by applying mobile AIGC-driven HDT.
Specifically, the platform is deployed on an edge server,
where numerous users, including trainers and trainees, can
access the server for participating the virtual class. Users
(i.e., PTs) engage the virtual class through their VTs. As
the virtual scene shown in Fig. 3, the hand represents a
hand of a trainer or trainee VT, and the woman represents
a patient VT. The trainer or trainee PT controls his/her VT to
massage the shoulder of the patient VT, and then the platform

https://www.simulations-plus.com/software/admetpredictor/ai-driven-
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provides all PTs with immersive experience by feeding back
haptic signals and VR video streams, among other feedback
signals. The haptic signals are transmitted by tactile Internet
[9], to users’ tactile devices (e.g., Geomagic Touch or tactile
gloves). Furthermore, in this highly interactive scenario where
low-latency transmission is required, the VR video streams
are typically large in size. To address this challenge, we
utilize semantic communication to deliver VR video streams
with the goal of reducing data size, network overhead and
communication latency. Particularly, as shown in Fig. 3,
the VR video streams will go through semantic information
extraction in the edge layer, including video skeleton and
text extractions (e.g., a short video that a pair of hands is
massaging a woman), and then those extracted information are
encoded by a video semantic encoder before being delivered
to users. To simultaneously cope with the issue that VR
videos may be corrupted due to healthcare data collection
errors and transmission packet losses, at the user side’ edge
server, we deploy an AIGC model using the received extracted
information and video skeleton to generate a video stream that
closely resembles the actual one. This paradigm demonstrates
that the powerful generative ability of AIGC cannot only
enable the provision of personalized healthcare services [10]-
[13], but also enhance the communication efficiency in the
PT-VT interactions of HDT.

Although such mobile AIGC-driven paradigm is well-
functioned and cost-efficient, it may suffer from a degradation
of users’ quality of experience (QoE), which is defined as the
linear combination of the bitrate of VR video and the similarity
between the generated and actual ones. To balance the trade-
off between QoE and network overhead, we further formulate
an optimization problem on top of the constructed testbed (i.e.,
virtual physical therapy teaching platform), taking into account
the constraints of bandwidth resource, computation resource
and users’ QoE thresholds, in optimizing the resolution ratio
and the diffusion step, with the aim of maximizing the total
users’ QoE. Here, the diffusion step is a key parameter in
generative diffusion models, which depicts the number of step
of removing Gaussian noise by running a neural network (e.g.,
U-Net) [6]. Note that the resolution ratio and diffusion step
are proportional to the bitrate and similarity, respectively.
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Fig. 3. The constructed virtual physical therapy teaching platform by applying mobile AIGC-driven HDT.

B. Solution and Result Analysis

A conditional diffusion model-based approach (CODI), with
the basic idea following [14], is particularly proposed to
address the optimization problem formulated above. In gen-
eral, for any given environment (i.e., the status of bandwidth
resource, computation resource and users’ QoE thresholds),
decisions (i.e., each user’s resolution ratio and diffusion
step) are first randomly generated according to the standard
Gaussian distribution. After the multi-step iterative denoising
through the proposed CODI approach, the output is the optimal
decision that maximizes the total users’ QoE. To be more
specific, we employ the actor-critic architecture-based deep
reinforcement learning (DRL) paradigm to train the condi-
tional diffusion model, where the conditional diffusion model
network acts as the actor to map a given environment to the
optimal decisions, and the critic network is trained by the
double Q-learning technique to evaluate the value of decisions
made by the actor.

We compare the performance of the proposed CODI ap-
proach with two conventional DRL algorithms, i,e., SAC and
PPO [15], in the constructed testbed. Fig. 4 (a) illustrates the
reward (i.e., reflected by the total users’ QoE) obtained by
three different algorithms during the training stage. It is shown
that PPO requires more training steps to converge, and SAC
can faster stabilize at a higher reward than PPO, while its
final reward value is lower than that of the proposed CODI
approach. Furthermore, Fig. 4 (b) compares the total users’
QoE obtained by three algorithms with respect to the amount
of users. It can be observed that the proposed CODI approach
is obviously superior to PPO and SAC. This is mainly because
the proposed approach can achieve better sampling quality and
possess better long-term dependence procession capability. In
particular, the proposed CODI approach can generate higher
quality decisions (i.e., each user’s resolution ratio and diffusion
step) by iteratively denoising multiple times. Since each de-
noising step gradually adjusts the model’s output, the effect of
uncertainty and noise can be reduced, while the conventional
DRL algorithms (i.e., SAC and PPO) directly map the given
environment to the output in one step, and thus leading to
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Fig. 4. (a) Comparison of the obtained reward w.r.t. number of training steps.
(b) Comparison of the total users’ QoE w.r.t. amount of user.

inevitable deviations.

V. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

In this article, we have presented a novel framework, namely
mobile AIGC-driven HDT, for revolutionizing personalized
healthcare. We propose the system architecture, and highlight
the corresponding key design requirements and challenges for
mobile AIGC-driven HDT. Moreover, we have illustrated two
kinds of the potential applications and conducted a case study
to demonstrate the effectiveness of mobile AIGC-driven HDT
in a constructed testbed. However, there are still major open
issues remaining to be studied in the future, as outlined below.

1) How to break down data silos: The medical datasets used
to pre-train mobile AIGC-driven HDT are collected from
not only users themselves, but also many medical insti-
tutions owning larger amounts and more comprehensive
historical data. However, the data and information in
the current medical systems are fragmented and even
severely segmented, resulting in data heterogeneity and
bias. Specifically, medical data is relatively sensitive
and to better protect patients’ privacy, most medical
institutions are unwilling to share their data. These
indicate that it is imperative to develop a unified and
secure data management framework, e.g., by integrating
blockchain and federated learning, in medical systems
to train a full-featured mobile AIGC-driven HDT.



2) How to achieve cross-modal content generation: Cross-
modal content generation for mobile AIGC-driven HDT
is mainly challenged by the complexity of cross-modal
matching and the lack of data standardization. Specifi-
cally, medical data of different modalities exhibit highly
distinct features, making cross-modal matching tasks
complicated. Besides, different medical institutions may
use various equipment, each with its own standards,
leading to the absence of standardized data formats
or interfaces. To circumvent these difficulties, cross-
domain collaborations with meta-learning and open set
learning may be adopted to characterize the relationships
among different data modalities, enhancing the model
robustness and generalization.

3) How to balance tradeoff among high fidelity, accuracy
and sustainability: The updates of mobile AIGC-driven
HDT involve repeated and asynchronous downloading
and uploading high-dimensional (millions to billions)
model parameters. This generates enormous data traffics
and consumes a vast amount of energy in the communi-
cation and computation procedures. Thus, developing a
robust, efficient, and sustainable training and deployment
method for mobile AIGC-driven HDT is an urgent issue
that needs to be addressed. Promising solutions may
be green computing and communication, and model
compression techniques, such as pruning, quantization
and knowledge distillation.
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