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Abstract—In this paper, we study the energy-efficient un-
manned aerial vehicle (UAV) swarm assisted mobile edge comput-
ing (MEC) with dynamic clustering and scheduling. In the consid-
ered system model, UAVs are divided into multiple swarms, with
each swarm consisting of a leader UAV and several follower UAVs.
These UAVs serve as mobile edge servers, providing computing
services to their covered ground end-users. Unlike existing works,
we allow UAVs to dynamically cluster into different swarms, in
other words, each follower UAV can change its leader based on
the time-varying spatial positions, updated application placement,
etc. in a dynamic manner. With the objective of maximizing the
long-term energy efficiency of the UAV swarm assisted MEC
system, a joint optimization problem of UAV swarm dynamic
clustering and scheduling is formulated. Considering the inherent
cooperation and competition among intelligent UAVs, we further
reformulate this problem as a combination of a series of strongly
interconnected multi-agent stochastic games, and theoretically
prove the existence of the corresponding Nash Equilibrium (NE).
Then, we propose a novel reinforcement learning based UAV
swarm dynamic coordination (RLDC) algorithm for obtaining
such an equilibrium. Furthermore, the convergence and com-
plexity of the RLDC algorithm are analyzed. Simulations are
performed to evaluate the performance of RLDC and illustrate
its superiority compared to existing approaches.

Index Terms—UAV swarm, MEC, long-term energy efficiency,
stochastic game, reinforcement learning

I. INTRODUCTION

Recently, the concept of unmanned aerial vehicle (UAV)
assisted mobile edge computing (MEC) [2]–[4] has attracted
significant attention due to its high mobility, flexible coverage
and rapid deployment in providing fast-responsive supple-
mentary computing services to end-users (e.g., IoT devices).
Specifically, in a UAV swarm, a leader UAV possesses the
capability to dynamically guide their follower UAVs to ap-
proach end-users. Furthermore, by forming into swarms (each
of which consists of a leader and multiple followers [5]), UAV
swarm assisted MEC can further improve the collaboration
among UAVs for enhancing service quality, and thus has
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become a popular trend for terrain limited and emergency
applications, such as wireless inland ship [6], [7] and maritime
ship [8].

Although UAV swarm assisted MEC is envisioned as a
lightweight and highly efficient paradigm, it faces several
inherent restrictions. For instance, the computing workload
among different swarms may be severely unbalanced with
fixed clustering. Furthermore, the restricted energy capacities
of UAVs hinder the practical implementation of this paradigm
for providing the long-term MEC services. Moreover, the
constrained storage capacities of UAVs hinder their capability
to accommodate all applications to meet the varied task
requirements. Recent research efforts in this area include
cooperative trajectory planning [9], [10] and collaborative task
delegation [11]–[13], etc. Nevertheless, there are still several
crucial challenges, especially how UAV swarms can cater
to dynamic service requirements of IoT devices, and how
UAV swarms can be dynamically clustered based on their
spatial positions and updated application placement, which
are imperative but have not yet been well investigated and
are exceedingly difficult due to the following factors. i) Since
the MEC service demands of IoT devices vary dynamically,
UAV swarms with fixed clustering makes it challenging to
balance the computing workload among different swarms.
This prompts us to dynamically schedule the clustering of
UAVs to collaboratively provide MEC services for IoT devices
with balanced workload. ii) UAVs (especially the leaders) are
battery-constrained and have to fly to the depot for energy
replenishment if necessary, meaning that the leader UAV
interrupts computing services, reducing system performance.
This motivates us to develop a more efficient approach to
dispatch UAVs to return to the depot for energy replenishment.
iii) The limited storage capacities of UAVs (both leaders and
followers) impede their abilities to store all applications to
fulfill diverse task requirements of IoT devices, which inspires
us to update application placement of UAVs and enable UAVs
to help with each other through task delegations (particularly
within the swarm).

In this paper, we investigate the joint optimization of UAV
swarm dynamic clustering and scheduling, considering energy
replenishment, application placement, trajectory planning and
task delegation for UAV swarm assisted MEC. The objective
is to optimize the long-term energy efficiency of all UAVs,
defined as the number of tasks processed by all UAVs divided
by their total energy consumption when offering MEC service.
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In the considered system, leader UAVs lead the swarm in
moving to other areas, replenishing energy and updating their
application through wired connections. Furthermore, follower
UAVs dynamically change swarms and decide whether to
process tasks locally or delegate tasks to their followed leader
UAV. Addressing the optimization problem is challenging
due to several reasons. First, while UAVs are intelligent and
capable of making autonomous decisions based on the state
information, the system objective of improving total energy
efficiency necessitates cooperative strategies among all UAVs,
while enabling UAVs to autonomously make individual de-
cisions may potentially result in competitions and suboptimal
outcomes. For instance, leader UAVs might prioritize their own
computation offloading requests and postpone energy replen-
ishment, disregarding the needs of other UAVs. Moreover, they
may focus on placing popular applications without considering
the quality of service (QoS) requirements of IoT devices,
thereby degrading system performance. Additionally, selfish
movement decisions of leader UAVs towards regions with
intensive computation requirements can result in collisions
among UAV swarms. Follower UAVs might prefer joining
UAV swarms that serve more IoT devices, leading to a
higher number of follower UAVs occupying a leader UAV’s
computing resources. Second, we also consider that UAVs do
not have access to future environment information.

To tackle these challenges, we reformulate the joint opti-
mization problem as a series of complex multi-agent stochastic
games: energy replenishment stochastic game (ERSG), appli-
cation planning stochastic game (APSG), trajectory planning
stochastic game (TPSG), dynamic clustering stochastic game
(DCSG), and task delegation stochastic game (TDSG). This
formulation allows us to comprehensively describe strategic
interactions among UAVs and facilitates a refined problem
structure for finding solutions. However, due to the tight cou-
pling among these multi-agent stochastic games, solving them
directly remains difficult. To obtain the corresponding equilib-
rium for these interconnected multi-agent stochastic games, we
design a novel reinforcement learning (RL) based UAV swarm
dynamic coordination (RLDC) algorithm, with the objective of
generating the long-term optimal energy efficient decisions for
providing quality services for IoT devices. For clarity, the main
contributions of this paper are summarized in the following.

• A joint optimization problem of dynamic clustering and
scheduling in UAV swarm assisted MEC is formulated,
with the objective of maximizing the long-term energy
efficiency.

• Through the observation of cooperation and competition
among UAVs as well as the environmental uncertainty,
we reformulate the optimization problem as a series
of interconnected multi-agent stochastic games, called
ERSG, APSG, TPSG, DCSG and TDSG.

• To efficiently obtain the corresponding equilibrium for
these interconnected games, we propose a novel algo-
rithm, called RLDC. Additionally, we theoretically prove
it existing Nash Equilibrium (NE), and analyze the con-
vergence and complexity of the RLDC algorithm.

• Extensive simulations are performed to demonstrate the

superiority of the RLDC algorithm over counterparts. The
simulation results validate the effectiveness and efficiency
of the RLDC algorithm in achieving optimized solutions
for the UAV swarm assisted MEC system.

The rest of this paper is organized as follows: Section II
reviews the related work and highlights the novelties of this
paper. Section III presents the system model and problem
formulation of the considered UAV swarm assisted MEC. In
Section IV, a problem reformulation based on multi-agent
stochastic games is developed. Section V proposes the RLDC
algorithm for optimizing dynamic UAV swarm clustering and
scheduling. Simulation results are presented in Section VI,
followed by the conclusion in Section VII.

II. RELATED WORK

In recent years, there has been a significant increase in
attention towards adopting UAV swarms as edge servers for
IoT devices in MEC systems, which can be attributed to the
rapid development of UAV technology. For instance, Wang
et al. in [14] proposed an optimal collaborative computing
offloading method to solve the collaborative task offloading
problem in edge computing based on UAV swarms, aiming to
minimize the overall task processing delay. Huang et al. in [15]
proposed a grouping and role partitioning algorithm to solve
the high latency that can result from multi-hop transmissions
between UAVs. Seid et al. in [16] proposed a multi-agent re-
inforcement learning based drone cluster algorithm to provide
computing task offloading and resource allocation services
for IoT devices to minimize overall network computing costs
while ensuring quality of service (QoS) for IoT devices or
UEs in IoT networks. Liao et al. in [2] proposed a heuristic
algorithm to solve the problem of minimizing UAV swarm
energy consumption with the constraints of UAV flight speed
and swarm stability in an iterative manner. Fragkos et al. in
[17] designed an autonomous MEC server selection scheme
for UAV data offloading based on stochastic learning automata
theory and developed non-cooperative games to determine
which UAV data to offload to selected MEC servers. However,
in the majority of these studies, dynamic clustering in UAV
swarm assisted MEC was neglected.

To enhance the energy efficiency of UAV swarm assisted
MEC, energy replenishment, trajectory planning, task delega-
tion, and application placement have been discussed in existing
work. For energy replenishment, Liang et al. in [18] applied
magnetic coupled resonant wireless power transmission tech-
nology, which makes mobile users collect abundant energy
from wireless charging stations in a short period of time.
In terms of trajectory planning, Mou et al. in [19] designed
a UAV swarm trajectory algorithm that performs specific
coverage tasks within patches to solve the coverage problem
of three-dimensional irregular terrain. For task delegation,
Li et al. in [11] proposed a layered network architecture
based on UAV swarms to jointly delegate sensing task and
computing to improve computing resource utilization. For
application placement, to the best of our knowledge, only a
few existing research focus on application placement [4], [20].
Moreover, the energy efficiency optimization of UAV swarm
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TABLE I
A TABLE COMPARING OUR WORK WITH THE EXISTING WORKS.

Reference Dynamic clustering Energy
replenishment

Application
placement Trajectory planning Task delegation

[14] % % % % !

[15] % % % % %

[16] % % % % !

[2] % % % % !

[17] % % % ! !

[18] % % % % !

[19] % ! % % !

[11] % % % ! %

[4] % ! ! ! %

Our work ! ! ! ! !

TABLE II
IMPORTANT NOTATIONS IN THIS PAPER

Symbol Meaning
M Set of leader UAVs
N Set of follower UAVs
K Set of IoT devices
L Positions set of leader UAVs
F Positions set of follower UAVs
I Positions set of IoT devices
T The number of time slot
l Length of the large grid
q Length of the small grid
V UAV Velocity
C The number of the task types
Zn Set of IoT devices served by follower UAV n

B Channel bandwidth
λ Path loss
φ LoS probability
γ SINR
µ Instantaneous achievable rate
ϖ Power spectral density of noise
ξ Effective capacitance coefficient
ωL Applications placement of leader UAVs
ωF Applications placement of follower UAVs
ε Set of leader UAVs returning to the depot
δ Set of follower UAVs following which leader UAVs
ϕ Set of whether delegating tasks to leader UAVs

assisted MEC involving multiple decision variables can be
formulated as a joint optimization problem. Nevertheless, the
joint optimization of dynamic clustering and scheduling has
not been previously investigated.

In summary, unlike prior existing work, this paper specif-
ically explores the following issues related to UAV swarm
assisted MEC systems. First, a joint optimization problem of
dynamic clustering and scheduling in UAV swarm assisted
MEC is formulated. Second, we reformulate the optimization
problem as a series of interconnected multi-agent stochastic
games, and subsequently propose a novel algorithm to deter-
mine the corresponding equilibrium. To highlight the novelties
of our work, we summarize the differences between our work
and existing works regarding UAV swarm-assisted MEC in
Table I.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. Overview

Consider a deployment scenario of UAV swarm-assisted
MEC in a target region, as shown in Fig. 1. The system
consists of a group of leader UAVs, denoted as M with

Depot

Task delegation

Leader UAV

Follow another leader UAV Applications

Tasks

Follower UAV

UAV energy  

Coverage of follower UAV

Task offloading

Interference

IoT device

Fig. 1. An illustration of the considered UAV swarm assisted MEC system.

|M| = M , a group of follower UAVs, denoted as N with
|N | = N , and a set of IoT devices scattered randomly on
the ground, denoted as K with |K| = K. At the edge of
the target region, a depot is deployed to serve leader UAVs
with energy replenishment and application placement update
via wired connections. We investigate a time-slotted operation
framework, which is characterized by t ∈ {1, 2, ..., T}. The
target region is uniformly divided into large grids with side
length l to limit the activities scope of each swarm. Meanwhile,
the large grids are further uniformly partitioned into small
grids with side length q to specify the activities of follower
UAVs. Similar to [21], the downlink transmission range of
each follower UAV is set as

√
2q/2, such that it can cover

a small grid for computation outcome feedback. Additionally,
we denote the set of IoT devices served by follower UAV
n ∈ N as Zn. Since we consider that each UAV swarm shares
a frequency band B, IoT devices may introduce interference
to other UAVs within the swarm. All important notations are
listed in Table II.

To clearly describe the process of UAV swarms providing
MEC service over the target region, we illustrate the time
slot structure, as shown in Fig. 2. At the beginning of each
time slot t, each leader UAV determines whether to return to
the depot for replenishing energy and updating applications.
If a leader UAV chooses not to return to the depot, it will
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Fig. 2. Time slot structure of UAV swarms providing MEC service over the
target region.

autonomously lead its UAV swarm to move to another adjacent
large grid with a constant velocity and a direction (forward,
backward, left, or right), and this period of time is denoted
as TSmov. Then, the leader UAV hovers over the center of
the large grid with the time TLhov . During the period of time
TLhov , each follower UAV independently determines which
leader UAV to follow for clustering with the time T clus, and
hover over the center of the small grid for processing tasks
and task delegation with the time TFhov. Additionally, since
the size of the results is significantly small compared to the
offloaded task, the delay and energy consumption associated
with delegating results back from follower UAVs to IoT
devices are omitted in this paper. Note that if the follower UAV
cannot process the tasks received from IoT devices, it will
delegate the task to their followed leader UAV for processing.
Moreover, to improve the energy efficiency of follower UAVs,
leader UAVs provide energy replenishment to the follower
UAVs in a swarm through wireless power transfer technology
[22]. In contrast, if the leader UAV chooses to return to the
depot, it will replenish its energy and update its application
placement.

B. Task Offloading and Delegation Model

In this paper, let L(t) = {L1(t),L2(t)...,LM (t)}, F(t) =
{F1(t),F2(t)...,FN (t)} and I(t) = {I1(t), I2(t)..., IK(t)}
denote the set of leader UAVs’ positions, the set of follower
UAV’s positions and set of IoT devices’ positions, respectively.
Therein, Lm(t) = (xL

m(t), yLm(t)), Fn(t) = (xF
n (t), y

F
n (t)),

Ik(t) = (xI
k(t), y

I
k(t)) represent their horizontal coordinates

at time slot t, respectively. Thus, the distance between
follower UAV n and IoT device k, as well as the distance
between leader UAV m and follower UAV n at time
slot t can be mathematically expressed as dn,k(t) =√

(xF
n (t)− xI

k(t))
2 + (yFn (t)− yIk(t))

2 +H2
F and dm,n(t) =√

(xL
m(t)− xF

n (t))
2 + (yLm(t)− yFn (t))

2 + (HL −HF )2,
where HL and HF denote the fixed flight altitudes of leader
UAVs and follower UAVs, respectively.

Following the literature [10], the line-of-sight (LoS)
probability between follower UAV n and IoT device k
at time slot t can be expressed as φn,k(t) = a ·
exp(−b(arctan(HF /dn,k(t))−a)), where a and b are constant
values depending on the environment. Based on this, their
path loss is given by λn,k(t) = 20 log

√
H2

F + dn,k(t)2 +
φn,k(t)(ηLoS − ηNLoS) + 20 log((4πf c)/cl) + ηNLoS , where
f c signifies the carrier frequency, and cl signifies the speed

of light. ηLoS and ηNLoS denote the losses corresponding to
LoS and non-LoS, respectively. Following the literature [23],
the path loss between leader UAV m and follower UAV n at
time slot t can be expressed as λm,n(t) = 32.45+20 log f c+
20 log dm,n(t).

Given the reuse of a common frequency band across all
links in a UAV swarm, the signal-to-interference-plus-noise
ratio (SINR) at follower UAV n for the uplink communication
of IoT device k, and at leader UAV m for the uplink communi-
cation of follower UAV n during time slot t, can be expressed
as γn,k(t) = pIk10

−λn,k(t)/10/(
∑

i∈Gn\k p
I
i 10

−λn,k(t)/10+ϖ)

and γm,n(t) = pFn 10
−λm,n(t)/10/ϖ, respectively. pIk and pFn

denote the transmission power of IoT device k and follower
UAV n, respectively. ϖ denotes the power spectral density
of noise. Besides, it is assumed that follower UAV n can
only receive one task offloaded from IoT device k ∈ Zn at
time slot t. Hence, the instantaneous achievable rates of IoT
device k offloading tasks to follower UAV n, and follower
UAV n delegating tasks to leader UAV m at time slot t can
be written as µF

n,k(t) = B log2(1 + γn,k(t)) and µL
m,n(t) =

B log2(1+γm,n(t)), respectively. Let C = {1, 2, ..., C} denote
the set of task types. Therefore, the time of IoT device k
offloading its task whose type is c ∈ C to follower UAV n,
and the time of follower UAV n delegating its task whose type
is c to leader UAV m at time slot t can be expressed as:

T off
n,k,c(t) = υk,c(t)κk,c/µ

F
n,k(t) (1)

and

T dele
m,n,c(t) = (1− εm(t))δm,n(t)ϕm,n,c(t)κk,c/µ

L
m,n(t), (2)

respectively, where κk,c indicates the size of the task whose
type is c offloaded from IoT device k. υk,c(t) ∈ [0, 1], and
υk,c(t) = 1 means that IoT device k requests its task whose
type is c at time slot t, otherwise υk,c(t) = 0. Note that we
consider each IoT device generating only one task request at
time slot t in this paper. Besides, εm(t) ∈ [0, 1], and εm(t) = 1
means that leader UAV m returns to the depot at time slot
t, otherwise εm(t) = 0. Meanwhile, δm,n(t) ∈ [0, 1], and
δm,n(t) = 1 means that follower UAV n follows the leader
UAV m at time slot t, otherwise δm,n(t) = 0. Additionally,
ϕm,n,c(t) ∈ [0, 1], and ϕm,n,c(t) = 1 means that follower
UAV n delegates its task whose type is c to the leader UAV
m, otherwise ϕm,n,c(t) = 0.

C. UAV Computation Model

As shown in Figure 2, in this paper, we consider T off
n,k,c(t) <

TFhov
n (t), indicating that TFhov

n (t) is sufficiently long for
follower UAV n to receive each task offloaded by IoT device
k ∈ Zn at time slot t. Besides, the application c placed in
follower UAV n and leader UAV m can be defined as ωF

n,c(t) ∈
{0, 1} and ωL

m,c(t) ∈ {0, 1}, respectively. ωF
n,c(t) = 1 means

that follower UAV n places the application which can process
task type c, otherwise ωF

n,c(t) = 0. And the definition of
ωL
m,c(t) is similar to that of ωF

n,c(t). Consequently, the size
of tasks processed by follower UAV n and leader UAV m can
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be expressed as:

DF
n (t) = min{

∑
k∈Gn

∑M
m=1

∑C
c=1(1− ϕm,n,c(t))υk,c(t)

ωF
n,c(t)κk,c, f

F
n (TFhov

n (t)−min{T off
n (t)})}

(3)
and

DL
m(t) = min{

∑N
n=1

∑C
c=1 δm,n(t)ϕm,n,c(t)υk,c(t)

ωL
m,c(t)κk,c, f

L
m(TFhov

n (t)−min{T dele
m (t)})},

(4)
respectively, where T off

n (t) = {T off
n,1,1(t), ..., T

off
n,k,c(t), ...,

T off
N,K,C(t)} and T dele

m (t) = {T dele
m,1,1(t), ..., T

dele
m,n,c(t), ...,

T dele
M,N,C(t)}. fF

n and fL
m indicate the computing capacity of

follower UAV n and leader UAV m (the CPU cycle rate).
TFhov
n (t)−min{T off

n (t)} and TFhov
n (t)−min{T dele

m (t)} in-
dicate that follower UAV n and leader UAV m start to process
tasks when the first task is totally received, respectively.

D. UAV Propulsion Model

In this paper, we adopt a propulsion power model of
rotary-wing UAVs to compute the propulsion powers of leader
UAVs and follower UAVs, which is dependent on the velocity
v. Specifically, the propulsion power of each UAV can be
expressed as follows:

P pro(v) =
1
2 (

Sf

RsA
)ρRsAv

3 + (φe

8 ρRsAΩ3
eR

3
e)(1 +

3v2

(ΩeRe)3
) + ((1 + ςp)

(gMUAV )
3
2√

2ρA
)(
√

1 + v4/4(
√
gMUAV /2ρA)2 − v2/2(

√
gMUAV

2ρA ))
1
2 ,

(5)
where the parameters in (5) are described in Table III.

E. UAV Energy Model

In this paper, we consider that UAV energy consumption in-
cludes task delegation energy consumption, computing energy
consumption and propulsion energy consumption. First, the
task delegation energy consumption is given by Edele

n (t) =
pFnT

dele
m,n,c(t), where pFn indicates the transmission power of

follower UAV n. Moreover, the computing energy consump-
tion of follower UAV n and leader UAV m can be written as
Ecomp

n (t) = ξ(fF
n )2DF

n (t) and Ecomp
m (t) = ξ(fL

m)2DL
m(t),

where ξ indicates the effective capacitance coefficient. Be-
sides, fF

n and fL
m indicate the CPU frequencies of follower

UAV n and leader UAV m, respectively.
Additionally, the propulsion energy consumption of follower

UAV n and leader UAV m can be expressed as:

Epro
n (t) = P pro(v)(((1− δm,n(t− 1)δm,n(t))dm,n(t) + l/v)

+P pro(0)TFhov
n (t)

(6)
and

Epro
m (t) = εm(t)P pro(v)dreturnm (t)/v

+(1− εm(t))(P pro(v)l/v + P pro(0)TLhov
n (t)),

(7)

respectively, where dreturnm (t) indicates the distance between
leader UAV m and depot at time slot t. Specifically, Epro

n (t)
consists of the dynamic clustering energy consumption, hor-
izontal moving energy consumption and the hovering energy

consumption of follower UAV n at each time slot t. Mean-
while, Epro

m (t) consists of the energy consumption of returning
to the depot, horizontal moving energy consumption and the
hovering energy consumption of leader UAV m at each time
slot t. For simplicity, we consider that the clustering distance
between follower UAV n and its following leader UAV m is
denoted as dreturnm (t), which is the average distance between
follower UAV n and the UAV swram containing leader UAV
m.

Furthermore, let Echarge
m (t) denote the energy consumption

of leader UAV m aerial charging to the follower UAVs in
its UAV swarm. For simplicity, we consider that the energy
consumed by each follower UAV can be fully replenished by
the leader UAV in the swarm at time slot t, which can be
written as:

Echarge
m (t) =


∑N

n=1(
∑C

c=1 δm,n(t)p
F
nT

dele
m,n,c(t)

+ξ(fF
n )2DF

n (t) + Epro
n (t)), εm(t) = 0,

0, εm(t) = 1.
(8)

Based on these, let Eresi
m (t) and Etotal

m denote the residual
energy and energy capacity of leader UAV m at time slot t,
respectively. Eresi

m (t) can be formulated as:
Eresi

m (t) =
Eresi

m (t− 1)− Ecomp
m (t)− Epro

m (t)− Echarge
m (t),

εm(t− 1) = 0 , εm(t) = 0,
Eresi

m (t− 1)− Ereturn
m (t), εm(t) = 1,

Etotal
m , εm(t− 1) = 1 , εm(t) = 0,

(9)

F. Application Placement Model

In this paper, if leader UAVs choose to return to the depot,
they will update their application placement to provide better
MEC service. Besides, to guarantee the QoS for IoT devices,
it is essential to allocate each type of application to a leader
UAV that remains airborne over the target region during each
time slot. This allocation can be mathematically represented
as follows: ∑M

m=1
ωL
m,c(t)εm(t) ≥ 1,∀c ∈ C. (10)

After replenishing its energy and updating its applications,
leader UAV m will return to its original location within the
target region and resume its MEC service. It is noteworthy
that applications placed in leader UAV m must not exceed its
storage capacity, which is given by:∑C

c=1
ωL
m,c(t) ≤ SL, (11)

where SL indicates the maximum number of applications
placed in each leader UAV.

G. Problem Formulation

In this paper, we denote Eeffi(t) as the energy efficiency
of all UAVs at time slot t, which means that the size of tasks
processed by all UAVs relative to their energy consumption
during time slot t. This can be mathematically expressed as:

Eeffi(t) =
∑M

m=1 DL
m(t)+

∑N
n=1 DF

n (t)∑M
m=1(1−εm(t))(Eresi

m (t−1)−Eresi
m (t))

. (12)

Then we aim to jointly optimize the dynamic clustering
and scheduling of the considered UAV swarm assisted MEC
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TABLE III
UAV ENERGY MODEL PARAMETERS

Parameter Descriptions
pF
n transmission power of follower UAV n

fF
n CPU frequencies of follower UAV n

Rs Rotor solidity
ςp Induced power factor
φe Drag coefficient of the blade
Ωe Angular velocity of the blade
Sf Equivalent flat plate area of the fuselage
ξ effective capacitance coefficient
fL
m CPU frequencies of leader UAV m

MUAV UAV mass
ρ Air density
Re Rotor radius
A Rotor disc area
g Gravity acceleration

system, with the objective of maximizing the long-term energy
efficiency of all UAVs, which can be formulated as:

[P1] : max
L(t),ωL(t),ε(t),δ(t),ϕ(t)

lim
T→+∞

1

T

∑T

t=1
Eeffi(t)

(13a)
s.t., (10), (11),

Eresi
m (t) ≥ Ereturn

m (t),m ∈ M, (13b)∑M

m=1
δm,n(t) = 1,∀n ∈ N , (13c)

1 ≤
∑N

n=1
δm,n(t) ≤ N clus,∀m ∈ M, (13d)

X low ≤ (1− εm(t))xL
m(t) ≤ Xup,m ∈ M, (13e)

Y low ≤ (1− εm(t))yLm(t) ≤ Y up,m ∈ M, (13f)
where ωL(t) = {ωL

1,1(t), ..., ω
L
M,C(t)}, ε(t) = {ε1(t), ε2(t),

..., εM (t)}, δ(t) = {δ1,1(t), ..., εM,N (t)} and ϕ(t) =
{ϕ1,1,1(t), ..., ϕM,N,C(t)}. Constraint (13b) indicates that the
residual energy consumption can not be less than the returning
energy consumption for each leader UAV at time slot t;
constraint (13c) indicates that each follower UAV must follow
at least one leader UAV; constraint (13d) indicates that each
UAV swarm contains at least one and not more than N clus

follower UAVs, where N clus indicates the maximum number
of follower UAVs that can be accommodated in a UAV swarm;
constraint (13e) indicates that the abscissa of each leader UAV
cannot exceed the upper boundary Xup or fall below the lower
boundary X low unless it returns to depot; constraint (13f)
indicates that the ordinate of each leader UAV cannot exceed
the upper boundary Y up or fall below the lower boundary
Y low unless it returns to depot.

Remark 1: Taking into account UAV path planning induced
by dynamic clustering may also be interesting in the optimiza-
tion of the UAV swarm assisted MEC system. In fact, many
existing work have studied such an issue, i.e., individual UAV
path planning [24]–[26]. To be more specific, each follower
UAV flies to a new UAV cluster by determining a series of
actions (e.g., moving forward, back, left and right to another
adjacent small gird). Meanwhile, the relevant constraints (e.g.,
collision avoidance constraint) are required to be taken into
account in the dynamic clustering problem, which makes the
follower UAV’s action space very large. Hence, it may require
the introduction of more approaches, such as autonomous

path planning algorithm based on a tangent intersection and
target guidance strategy (APPATT) [24], tangent-based (3D-
TG) method [25] and adaptive clustering-based algorithm [26].
Obviously, this is not trivial but beyond the focus of the current
paper, and thus we would like to leave this extension and
integration in our future work. In the following sections, we
first reformulate the optimization problem [P1] as a series of
interconnected multi-agent stochastic games, and subsequently
introduce a novel algorithm to obtain the corresponding solu-
tion.

IV. PROBLEM REFORMULATION BASED ON MULTI-AGENT
STOCHASTIC GAME

A. Game Statement

To solve the UAV swarm dynamic clustering and scheduling
optimization in the unknown stochastic environment, the state-
ment of the multi-agent stochastic game is presented. Since
UAVs have no prior information on the task requirements of
IoT devices, the complete information based dynamic cluster-
ing and scheduling methods fail to effectively solve problem
[P1] under an unknown environment. At the beginning of each
time slot, a new stochastic state emerges in the environment,
which is impacted by both the previous state and the actions
taken by all UAVs in the preceding time slot. As a result,
the state-action transition adheres to the Markov property.
Considering the intelligence of UAVs, in order to solve
problem [P1], each UAV is allowed to independently make
decisions, and the relationships of cooperation and competition
exist among them. UAVs are formed as UAV swarms to
cooperatively take actions (dynamic clustering and scheduling)
to maximize the energy efficiency of the whole UAV swarm
assisted MEC system. Meanwhile, UAVs independently make
decisions based on individual interest, in which the conflicts
of interest among UAVs leads to competition. The competition
caused by granting UAVs to make decisions independently is
outlined as below.

1) For energy replenishment, each leader UAV may prefer
to processing more tasks for maximizing its energy efficiency
but is reluctant to return to the depot to replenish its energy
until its battery is completely depleted, potentially leading to
the collapse of constraint (10).

2) For application placement, in order to optimize leader
UAVs’ energy efficiency, each leader UAV has a tendency
to prioritize the placement of applications that are frequently
requested. However, this situation may neglect the QoS re-
quirements of several IoT devices, leading them to experience
resource starvation.

3) For trajectory planning, each leader UAV aims to max-
imize the energy efficiency of its swarm by moving to large
grids with demands for intensive computation. However, this
situation may result in collisions among UAV swarms.

4) For dynamic clustering, each follower UAV can leave the
previous swarm and join a new swarm for processing more
tasks. However, this situation may result in many follower
UAVs occupying a certain leader UAV’s computing resources,
making several tasks impossible to be processed in the leader
UAV’s hovering time.
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5) For task delegation, each follower UAV decides whether
to delegate tasks to their leader UAV or not, which will result
in computing resource competition among follower UAVs F.

Additionally, considering the uncertainty of the future envi-
ronment information, such as the uncertain task requirements
of IoT devices, we reformulate the joint optimization prob-
lem [P1] as a series of strongly interconnected multi-agent
stochastic games as described below.

B. Game Formulation

Firstly, we define the multi-agent stochastic game G as a
tuple ⟨U ,S,A,P,R⟩ based on the discussion above.

1) U = {1, 2, ..., U} denotes the set of agents.
2) S denotes the set of environment states. s(t) denotes the

environment state at time slot t.
3) A = {A1,A2, ...,AU} represents the set of joint actions,

where Au refers to the set of individual actions for agent u.
The joint action at time slot t is represented as a(t) ∈ A,
while the individual action of agent u is represented as
au(t) ∈ Au. Hence, the joint action can be expressed as
a(t) = {a1(t), ..., aU (t)}.

4) P denotes the U ×U matrix of state transition probabil-
ities. pss′(a(t)) signifies the probability of transitioning from
state s to s′ by taking the joint action a(t) ∈ A.

5) R = {R1,R2, ...,RU} indicates the reward function,
where ru represents the set of immediate reward of agent u ∈
U .

For the formulated stochastic game G, the mapping from the
set of states to the set of actions is represented by the policy
denoted as πu : S −→ Au. It is worth noting that the expected
reward of each agent depends on the joint policy instead of
the individual policy. Thus, we introduce the NE to determine
the joint policy, which is defined as follows:

Definition 1: An NE refers to a set of optimal pol-
icy for multi-agent stochastic game G, denoted as π∗ =
{π∗

1 , π
∗
2 , ..., π

∗
U}, if and only if no player can minimize its

expected discount function by unilaterally departing [27], i.e.,
Θ̂u(π

∗
u,π

∗
U\{u}) ≥ Θ̂u(πu,π

∗
U\{u}),∀u ∈ U ,∀πu ∈ π.

Second, we model the multi-UAV dynamic cluster-
ing and scheduling problem as interconnected multi-
agent stochastic games. The multi-agent stochastic games
are consisted of ERSG ⟨U ,SER,AER,PER,RER⟩, APSG
⟨U ,SAP ,AAP ,PAP , RAP ⟩, TPSG ⟨U ,STP ,ATP ,PTP ,
RTP ⟩, DCSG ⟨U , SDC ,ADC ,PDC ,RDC⟩ and TDSG
⟨U ,STD,ATD,PTD, RTD⟩. Specifically, for ERSG, APSG
and TPSG, each leader UAV independently selects an action
based on the current environmental states sER(t) ∈ SER,
sAP (t) ∈ SAP and sTP (t) ∈ STP , respectively. Subse-
quently, the joint actions aER(t) ∈ AER, aAP (t) ∈ AAP

and aTP (t) ∈ ATP are formed. After executing these joint
actions, rewards are obtained according to RER, RAP and
RTP , and the environment transitions to its next state by
PER, PAP and PTP , respectively. Similarly, for DCSG and
TDSG, each follower UAV independently selects an action
based on the current environmental states sDC(t) ∈ SDC and
sTD(t) ∈ STD, respectively. Subsequently, the joint actions
aDC(t) ∈ ADC and aTD(t) ∈ ATD are formed. After

executing these joint actions, rewards are obtained according
to RDC and RTD, and the environment transitions to its next
state by PDC and PTD, respectively.

Note that, ERSG, APSG, TPSG, DCSG and TDSG are
inherently interconnected. Specifically, the joint action of
ERSG aER(t) ∈ AER determining whether leader UAVs lead
their swarms to move to another adjacent large grid or update
application placement at time slot t changes the states STP

and SAP , respectively. Moreover, since different UAV swarms’
trajectories influence the dynamic clustering time of follower
UAVs, the joint action of TPSG aTP (t) ∈ ATP changes the
state SDC . Additionally, since the decisions of follower UAVs
choosing which leader UAV to follow influence UAV swarms’
formations for further delegating tasks, the joint action of
DCSG aDC(t) ∈ ADC changes the state STD. Finally, since
the computing energy consumption of leader UAVs influences
their residual energy, the joint action of TDSG aTD(t) ∈ ATD

changes the state SER. In the following section, we propose
a novel algorithm called RLDC to obtain equilibrium of these
interconnected multi-agent stochastic games.

Lemma 1: For ERSG, the optimal policy for leader
UAV m ∈ M can be denoted by πER∗

m , namely,
{πER∗

1 , πER∗
2 , ..., πER∗

M } forms the NE.
Proof: Please refer to Appendix A.

According to Definition 1 and Lemma 1, we aim to identify
a Nash equilibrium (NE) strategy for each agent u at any
given state s(t). It is worth noting that even though the
environmental information available to each agent may be
imperfect, they have the chance to learn the optimal policies
through repeated interactions with the environment [28]. Since
ERSG, APSG, TPSG, DCSG and TDSG can converge to their
optimal policies by the RLDC algorithm respectively, which
has been theoretically analyzed in Theorem 1 of Section V,
the interconnected multi-agent stochastic games can obtain the
optimal policy consisting of the optimal policies of ERSG,
APSG, TPSG, DCSG and TDSG. Therefore, the proposed
RLDC algorithm can achieve the equilibrium point for the
interconnected multi-agent stochastic games.

V. REINFORCEMENT LEARNING BASED UAV SWARM
DYNAMIC COORDINATION ALGORITHM

In this section, we first introduce a finite-state Markov
decision process (MDP) to characterize the game process of
each leader UAV and follower UAV. Then, we propose the
RLDC algorithm to maximize the expected long-term reward
of the considered UAV swarm-assisted MEC system, where
each learner operates in an unknown stochastic environment
and does not know the reward and transition functions in
advance. Since the state and action transitions satisfy the
Markov property in ERSG, APSG, TPSG, DCSG and TDSG,
we characterize the strategic decision processes of each leader
UAV and follower UAV by a series of respective MDPs.

MDP for each leader UAV in ERSG: To design an
optimal schedule for energy replenishment of all leader
UAVs in ERSG, the individual decision-making problem for
each leader UAV m ∈ M can be modeled as an MDP
(SER,AER

m ,RER
m ,PER).

This article has been accepted for publication in IEEE Transactions on Green Communications and Networking. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TGCN.2024.3424449

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS. Downloaded on July 12,2024 at 06:11:13 UTC from IEEE Xplore.  Restrictions apply. 



8

1) Environment state for each leader UAV in ERSG:
To reduce the size of the state space in ERSG, we di-
vide the energy of leader UAVs into several levels. Specif-
ically, the energy level of leader UAV m can be written as
Elevel

m (t) = ⌈Eresi
m (t)/Eunit⌉, where Eunit indicates the

UAV energy unit. Hence, the environment state sER(t) ∈
SER for each leader UAV m ∈ M at time slot t can
be written as sER(t) = Elevel(t), where Elevel(t) =
{Elevel

1 (t), Elevel
2 (t), ..., Elevel

M (t)} indicates the set of all
leader UAVs’ energy levels.

2) Action for each leader UAV in ERSG: Leader UAV m ∈
M selects an action aER

m (t) ∈ AER
m at time slot t, where

AER
m denotes the action set of leader UAV m consisting of

two actions, i.e., returning to the depot or not.
3) Reward of each leader UAV in ERSG: The immediate

reward rER
m (t) ∈ RER

m of leader UAV m ∈ M at time slot t
is given by:

rER
m (t) =

{
−10, if constraint (10) is violated,
εm(t), otherwise. (14)

4) State Transition Probabilities of Leader UAVs in ERSG:
The state transition probability from state sER to state sER′

by
taking the joint action aER(t) = (aER

1 (t), aER
2 (t), ..., aER

M (t))
can be written as pER

sER,sER′ (aER(t)) = Pr(sER(t + 1) =

sER′ |sER(t) = sER,aER(t)). Moreover, the descriptions of
state transition probabilities of APSG PAP , TPSG PTP , DCSG
PDC and TDSG PTD are similar to that in ERSG, and are
omitted in this paper for conciseness.

MDP for each leader UAV in APSG: To produce an
optimal schedule for application placement of all leader
UAVs in APSG, the individual decision-making problem for
each leader UAV m ∈ M can be modeled as an MDP
(SAP ,AAP

m ,RAP
m ,PAP ).

1) Environment state for each leader UAV in APSG: The
environment state sAP (t) ∈ SAP for each leader UAV m ∈
M consists of whether leader UAVs returning to the depot and
all leader UAVs’ applications placement at time slot t, which
can be expressed as sAP (t) = {ε(t),ωL(t)}.

2) Action for each Leader UAV in APSG: Leader UAV m
selects an action aAP

m (t) ∈ AAP
m , where AAP

m signifies the
action set of leader UAV m consisting of C!/((C−SL)∗SL!)
actions.

3) Reward of each leader UAV in APSG: The
immediate reward rAP

m (t) ∈ RAP
m of leader UAV

m ∈ M at time slot t can be written as: rAP
m (t) =∑t

τ=1

∑N
n=1

∑C
c=1

∑
k∈Zn

δm,n(τ)υk,c(τ)ω
L
m,c(τ), where

rAP
m (t) denotes the number of the tasks processed by leader

UAV m before time slot t.
MDP for each leader UAV in TPSG: To find an

optimal schedule for application placement of all leader
UAVs in TPSG, the individual decision-making problem for
each leader UAV m ∈ M can be modeled as an MDP
(STP ,ATP

m ,RTP
m ,PTP ).

1) Environment state for each leader UAV in TPSG: The
environment state sTP (t) ∈ STP for each leader UAV
m ∈ M consists of all leader UAVs’ positions L(t) and UAV
association set δ(t) at time slot t, which can be expressed as
sTP (t) = {L(t), δ(t)}.

2) Action for each leader UAV in TPSG: Leader UAV m ∈
M selects an action aTP

m (t) ∈ ATP
m at time slot t, where

ATP
m = {forward, backward, left, right} indicates the action

set of leader UAV m moving to an adjacent large grid in one
direction.

3) Reward of each leader UAV in TPSG: The immediate
reward rTP

m (t) ∈ RTP
m of leader UAV m ∈ M at time slot t

can be written as:

rTP
m (t) =

{
−10, if constraint (13e) or (13f) is violated,
Eeffi(t), otherwise.

(15)
MDP for each follower UAV in DCSG: To produce

an optimal schedule for application placement of all leader
UAVs in DCSG, the individual decision-making problem for
each leader UAV m ∈ M can be modeled as an MDP
(SDC ,ADC

n ,RDC
n ,PDC).

1) Environment state for each leader UAV in DCSG: The
environment state sDC(t) ∈ SDC for each follower UAV
n ∈ N consists of all leader UAVs’ positions L(t) and UAV
association set δ(t) at time slot t, which can be expressed as
sDC(t) = {L(t), δ(t)}.

2) Action for each leader UAV in DCSG: At time slot t,
follower UAV n ∈ N selects an action aDC

n (t) ∈ ADC
n , where

ADC
n signifies the action set of follower UAV n consisting of

M .
3) Reward of each leader UAV in DCSG: The immediate

reward rDC
n (t) ∈ RDC

n of follower UAV n ∈ N in DCSG at
time slot t can be written as:

rDC
n (t) =

{
−10, if constraint (13d) is violated,
Eeffi(t), otherwise.

(16)
MDP for each follower UAV in TDSG: To find an

optimal schedule for application placement of all leader
UAVs in TDSG, the individual decision-making problem for
each leader UAV m ∈ M can be modeled as an MDP
(STD,ATD

n ,RTD
n ,PTD).

1) Environment state for each follower UAV in TDSG: The
environment state sTD(t) ∈ STD for each follower UAV
n ∈ N consists of leader UAV m’s application placement
ωL

m(t), follower UAV n’s application placement ωF (t) and
UAV association set δ(t) at time slot t, which can be written
as sTD(t) = {ωL

m(t),ωF (t), δ(t)}.
2) Action for each follower UAV in TDSG: At time slot t,

follower UAV n ∈ N selects an action aTD
n (t) ∈ ATD

n , where
ATD

n (t) indicates the action set of follower UAV n consisting
of two feasible actions, i.e., whether delegating its tasks to the
leader UAV or not.

3) Reward of each follower UAV in TDSG: The immediate
reward rTD

n (t) ∈ RTD
n of follower UAV n ∈ N in

TDSG at time slot t can be written as: rTD
n (t) =∑M

m=1

∑C
c=1((D

F
n (t) + δm,n(t)D

L
m(t))/(pFnT

dele
m,n,c(t) +

ξ(fF
n )2DF

n (t)+ δm,n(t)ξ(f
L
m)2DL

m(t))), where the numerator
denotes the size of tasks processed by follower UAV n
and leader UAV m in a UAV swarm, and the denominator
represents the energy consumption of task delegation and
task processing.

Based on the formulation of these MDPs, we propose a
novel RLDC algorithm, where Q learning is utilized to obtain
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Fig. 3. An illustration of the RLDC algorithm.

the solution. In the proposed RLDC algorithm, each UAV
initially conducts uniform exchanges of its historical Q-values
with other UAVs. Subsequently, each UAV makes its current
decision and updates the reward based on its current Q-value
and the historical Q-values of other UAVs. Finally, each UAV
updates its Q-value for the subsequent exchange with other
UAVs based on its own decision, reward, and the historical
Q-values of others. For inter-UAV information interaction,
a central controller and a dedicated channel are enabled to
be responsible for managing UAV information, including the
reception and distribution of Q-values. Notably, to maintain the
timeliness of decision-making, the dedicated channel refrains
from participating in UAV decision-making, focusing solely
on information exchange. Therefore, each UAV’s decision-
making remains decentralized, with each UAV considering
only its own strategy optimization. Given that the data size
of the information exchanged via the dedicated channel is
considerably small (only Q values), while the transmission
rate of the dedicated channel between different UAVs can
be relatively large (commonly over 70 Mbps [29]), the delay
of the information exchange in such a system is negligible,
especially compared to that of the UAV decision-making
process. Similar settings have been widely employed in the
literature on game-theoretic analysis and optimization for UAV
systems [21] and [30].

To be more specific, we may adopt distributed channel
access (DCA) mechanisms to the dedicated channel, where
multiple UAVs share a common channel for exchanging
information [31]. Since most traditional DCA mechanisms
are based on random access schemes, we may consider the
most popular random access scheme, namely carrier-sense
multiple access with collision avoidance (CSMA/CA) [32],
which abides by listen-before-talk (LBT) protocol for regulat-
ing UAV to continually sense the channel before initiating a
transmission. Again note that, since this is a dedicated channel
for information exchange, the traffic load will be considerably
low. Similar settings are given in [29] and [31].

Furthermore, each leader UAV includes an energy replen-

ishment learner (ER learner), an application placement learner
(AP learner) and a trajectory planning learner (TP learner).
Meanwhile, each follower UAV includes and a dynamic clus-
tering learner (DC learner) and a task delegation learner (TD
learner). At the beginning of each time slot, each UAV first
shares its Q-values of ERSG, APSG and TPSG to other UAVs.
Subsequently, each leader UAV takes an action in ER learner.
If the leader UAV flies to the depot for energy replenishment,
it will take an action in AP learner. Otherwise, it will take an
action in TP learner. Afterwards, each follower UAV takes an
action in DC learner. Then, each leader UAV takes an action
in TD learner. Finally, each UAV updates its Q-values based
on its rewards and other UAVs’ shared Q values.

Settings for ER learner: The policy of ER learner in leader
UAV m is expressed as πER

m : SER −→ AER
m , which

signifies a probability distribution of actions aER
m ∈ AER

m in
a given state sER. Specifically, for leader UAV m in state
sER ∈ SER, the energy replenishment policy can be denoted
as πER

m (sER) = {πER
m (sER, aER

m )|aER
m ∈ AER

m }, where
πER
m (sER, aER

m ) is the probability of leader UAV m choosing
action aER

m in state sER.
The Q function of the ER learner for leader UAV m is the

expected reward resulting from executing action aER
m ∈ AER

m

in state sER ∈ SER under the given policy πER
m , which can be

expressed by QER
m (sER,aER, πER

m ) = E(
∑∞

τ=0 σ
τrER

m (t +
τ + 1)|sER(t) = sER,a(t)ER = aER, πER

m ), where the
constant discounted factor σ is defined with a value range of
[0, 1]. This equation yields the action value, commonly referred
to as the Q value. It takes into account the aggregation of
immediate rewards in the current time slot to ascertain the
long-term reward.

For striking a balance between exploration and exploitation,
in this paper, an exploration strategy based on ϵ-greedy is taken
into account for the ER learner. Specifically, the ER learner
for leader UAV m selects a random action aER

m ∈ AER
m in

state sER ∈ SER with probability ϵ, and chooses the optimal
action aER∗

m with probability (1−ϵ), where the best action has
QER

m (sER,aER∗, πER
m ) ≥ QER

m (sER,aER, πER
m ), ∀aER ∈
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AER with aER∗
m being the m-th element of aER∗. Then, the

probability of selecting action aER
m ∈ AER

m in state sER can
be expressed by:

πER
m (sER, aER

m ) ={
1− ϵ, if QER

m (sER, ·, ·) of aER
m is the highest,

ϵ, otherwise.
(17)

In the Q value update step of Q-learning, the
ER learner for UAV m follows the update rule
QER

m (sER,aER, t + 1) = QER
m (sER,aER, t) +

η
∑

m′∈M\m(QER
m (sER,aER, t) − QER

m′ (sER,aER, t)) +

ν(rER
m (t) + max

aER′∈AER
σQER

m (sER′
,aER′

, t) −

QER
m (sER,aER, t)), where η and ν denote the learning

rates. sER′
and aER′

denote the next environment state and
the next joint action, respectively.

Since the settings of other learners are similar to those
of the ER learner, they are omitted here for conciseness. In
summary, Algorithm 1 provides a detailed illustration of the
RLDC algorithm. To better understand the implementation
of UAV swarm dynamic clustering and scheduling in the
RLDC algorithm, we can take a look at an example: The
RLDC algorithm obtains the optimal strategy through several
iterations, where each iteration involves solving the long-term
optimization problem of UAV swarm dynamic clustering and
scheduling. At each time slot, first, leader UAV m ∈ M shares
Q values QER

m , QTP
m and QAP

m with other leader UAVs, which
means that the all leader UAVs simultaneously learn to update
the Q value from various state-action pairs [21]. Meanwhile,
follower UAV n ∈ N shares Q values QDC

n and QTD
n with

other follower UAVs. Second, leader UAV m selects an action
aER
m according to policy πER

m (sER
m |·) and then obtains reward

RER
m . If leader UAV m chooses to fly back to the depot for

energy replenishment, it will select an action aAP
m according

to policy πAP
m (sAP

m |·) for updating its applications and then
obtains reward RAP

m . Otherwise, leader UAV m will select
an action aTP

m according to policy πTP
m (sTP

m |·) for leading its
swarm to another adjacent large grid and then obtains reward
RTP

m . Third, follower UAV n selects an action aDC
n according

to policy πDC
n (sDC

n |·) for choosing a leader UAV to follow
and then obtains reward RDC

n . Meanwhile, follower UAV n
selects an action aTD

n according to policy πTD
n (sTD

n |·) for
whether delegating tasks to its leader UAV and then obtains
reward RER

m . Forth, the energy efficiency of all UAVs Eeffi

and Q values QER
m , QTP

m , QAP
m , QDC

n and QTD
n are updated.

Finally, the energy efficiency of all UAVs Eeffi is added and
the average energy efficiency of all UAVs is calculated at each
iteration.

The Convergence of the RLDC Algorithm:
As recognized in [33], [34], when the limits
of the Q value limt→∞ QER

m (sER,aER, πER
m , t),

limt→∞ QAP
m (sAP ,aAP , πAP

m , t), limt→∞ QTP
m (sTP ,

aTP , πTP
m , t), limt→∞ QDC

m (sDC ,aDC , πDC
m , t) and limt→∞

QTD
m (sTD,aTD, πTD

m , t) converge to the optimal Q
value QER∗

(sER,aER, πER
m ), QAP∗

(sAP ,aAP , πAP
m ),

QTP∗
(sTP ,aTP , πTP

m ), QDC∗

(sDC ,aDC , πDC
m ) and QTD∗

(sTD,aTD, πTD
m ) respectively,

the RLDC approach is converged.

Algorithm 1: RLDC Algorithm
1 Initialize Q value: QER

m = QAP
m = QTP

m = QDC
n = QTD

n = 0,
∀m ∈ M, n ∈ N .

2 Set the maximal iteration counter LOOP , loop = 0 and sum = 0.
3 for loop < LOOP do
4 Set t = 0.
5 while t ≤ T do
6 for m = 1 to M do
7 Share Q values QER

m , QTP
m and QAP

m with leader UAV
m′ ∈ M\m.

8 Observe states sER(t), sAP (t) and sTP (t).
9 Select aER

m (t) according to πER
m (sER, ·).

10 if εm(t) = 1 then
11 Select aAP

m (t) according to πAP
m (sAP , ·).

12 else
13 Select aTP

m (t) according to πTP
m (sTP , ·).

14 for n = 1 to N do
15 Share Q values QDC

n and QTD
n with follower UAV

n′ ∈ N\n.
16 Observe states sDC(t) and sTD(t).
17 Select aDC

n (t) according to πDC
n (sDC , ·).

18 Select aTD
n (t) according to πTD

n (sTD, ·).

19 Obtain the Eeffi(t) and the rewards RER
m (t), RAP

m (t),
RTP

m (t), RDC
n (t) and RTD

n (t).
20 Update the Q values QER

m (t), QAP
m (t), QTP

m (t), QDC
n (t) and

QTD
n (t).

21 Set t = t + 1.

22 Set sum = sum +
∑T

t=1 Eeffi(t)
23 Set loop = loop + 1.

24 Output: sum/loop

Lemma 2: A random iterative process ∆t+1(x) = (1 −
νt(x))∆t(x) + ηt(x)Φt(x) converges to zeros with a proba-
bility of 1 under the following conditions:
1) The state space is finite.
2)

∑
t ν

t(x) =
∑

t η
t(x) =

∑
t(ν

t(x))2 =
∑

t(η
t(x))2 = ∞

and E{ηt(x)|Λt} ≤ E{νt(x)|Λt}.
3) ||E{Φt(x)|Λt}||w ≤ χ||∆t||w, where χ ∈ (0, 1).
4) V ar{Φt(x)|Λt} ≤ Λ(1+ ||△t||W )2, where Λ is a constant.

Proof: Please refer to Appendix B.
Theorem 1: In ERSG, we can obtain:

P(limt→∞QER
m (sER,aER, πER

m , t) = QER∗

m (sER,aER,
πER∗
m )) = 1,∀m ∈ M, sER ∈ SER,aER ∈ AER.

Proof: Please refer to Appendix C.
The theorem and proof of QAP

m , QTP
m , QDC

n and QTD
n is

analogous to that of QER
m , and thus their detailed procedures

are omitted here for conciseness.
Through the theoretical analysis, we show that the op-

timal NE exists in the proposed RLDC algorithm, and
the NE point can be obtained by updating Q-value (i.e.
updating Q matrix one by one). Specifically, in Theo-
rem 1, we first prove P(limt→∞QER

m (sER,aER, πER
m , t) =

Q
ER

m (sER,aER, πER
m )) = 1. Then, according to the proof of

Lemma 2, we have P(limt→∞Q
ER

m

(sER,aER, πER
m , t) = QER∗

m (sER,aER, πER∗
m )) = 1. Hence,

we obtain P(limt→∞QER
m (sER,aER,

πER
m , t) = QER∗

m (sER,aER, πER∗
m )) = 1, which indicates

that leader UAV m can obtain the optimal policy πER∗
m in

ERSG. Similarly, according to Lemma 1, all leader UAVs can
obtain their optimal policies {πER∗

1 , πER∗
2 , ..., πER∗

M }, which
indicates that the system can reach NE point in ERSG. Given
the analogy in theorem and proof between QAP

m , QTP
m , QDC

n ,
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QTD
n and QER

m , it follows that APSG, TPSG, DCSG, and
TDSG can each reach their respective NE by the RLDC
algorithm. Consequently, the NE of interconnected multi-agent
stochastic games encompasses those of ERSG, APSG, TPSG,
DCSG, and TDSG. Thus, the system can reach this NE point
in interconnected multi-agent stochastic games.

The Complexity of the RLDC Algorithm: Hereafter, we
analyze the time complexity and space complexity of the
proposed RLDC algorithm, which plays a critical role in
UAV swarm assisted MEC system. The time complexity of
the proposed RLDC algorithm is dependent on three factors:
the maximal iteration counter LOOP , the number of time
slots T , and the number of follower UAVs N . Thus, the time
complexity can be written as O(LOOP ∗ T ∗N). The space
complexity of the proposed RLDC algorithm is determined
by the size of information exchanged among all UAVs during
dynamic clustering and scheduling. Specifically, the size of
this information is determined by the dimension of the state
space in various learners. As mentioned before, the dimension
of the state space in the ER learner is influenced by the energy
levels. The dimension of the state space in the AP learner
depends on the application types. Furthermore, the dimension
of the state space in the TP learner is affected by the number of
possible positions. Similarly, the dimension of the state space
in the DC learner is influenced by the number of possible
positions. Finally, the dimension of the state space in the TD
learner is influenced by the number of possible positions and
application types. Therefore, for a given UAV swarm assisted
MEC system, the space complexity of the proposed RLDC
algorithm remains constant even with increasing number of
IoT devices over the target region, which indicates that the
proposed RLDC algorithm demonstrates scalability.

VI. SIMULATION RESULTS

In this section, simulations are conducted to evaluate the
performance of the proposed RLDC algorithm. We consider a
1000m×1000m square target region, which includes 3 leader
UAVs and 9 follower UAVs. Meanwhile, 500 IoT devices
are randomly located in the target region, and their positions
are not time-varying. Additionally, the leader UAVs’ altitude
is 150m, while the follower UAVs’ altitude is 120m. Table
IV lists the values of main simulation parameters. Table V
lists the RLDC algorithm settings. Similar settings have also
been utilized in previous work such as [21], [35]–[37]. It is
worth noting that specific parameters have the potential to
vary based on various evaluation scenarios. For the purpose of
comparison, we introduce two benchmark algorithms, namely,
a fixed UAV swarm algorithm and a no UAV swarm algorithm.
• Fixed UAV swarm algorithm is devised to maximize

the energy efficiency of all UAVs without considering
dynamic clustering based on the RLDC algorithm, where
each leader UAV contains a TP learner, an ER learner
and an AP learner, and each follower UAV contains a
TD learner.

• No UAV swarm algorithm is devised to maximize the
energy efficiency of all UAVs without considering UAV
swarm and leader UAV based on the RLDC algorithm,

TABLE IV
SIMULATION PARAMETERS

Parameter Value

Carrier frequency fc 3 GHz

Effective Capacitance Coefficient ξ 10−18

Number of task types C 10
Time slot length t 30 s
Length of the small grid q 50 m

Storage capacity of each leader UAV SL 6

Storage capacity of each follower UAV SF 4

Transmission power of follower UAV pF 0.2 W
Bandwidth B 10 MHz
Power spectral density of noise ϖ −174dBm/Hz
UAV velocity v 20 m/s
Length of the large grid q 150 m

Computing capacity of leader UAV fL 4 Mbps

Computing capacity of follower UAV fF 2 Mbps

Transmission power of leader UAV pL 2 W
The maximum number of follower UAVs 9

Task size of follower UAVs κk,c in a UAV swarm Nclus 10 Mbits

TABLE V
RLDC ALGORITHM SETTINGS

Leader UAV
ER learner (state space size = ⌈Etotal/Eunit⌉M , action space size = 2)
AP learner (state space size = 22M+C , action space size = C!/((C−SL)∗SL!))
TP learner (state space size = ((Xup−Xlow)/l)2M ∗ ((Y up−Y low)/l)2M

∗2N ), action space size = 4)
Follower UAV
DC learner (state space size = ((Xup−Xlow)/l)2M ∗((Y up−Y low)/l)2M

∗2N ), action space size = M )
TD learner (state space size = 22N+2C , action space size = 2)
Discounted Factor σ Learning Rate η/ν Probability ϵ

0.9 0.1/0.1 0.1

where each UAV is equipped with a TP learner, an ER
learner and an AP learner.

Fig. 4 illustrates the variation in energy consumption of
leader UAVs over time slots, indicating the impact of dynamic
clustering on leader UAVs’ energy consumption. Since leader
UAVs need to expend energy to charge their follower UAVs,
an increase in the number of follower UAVs following the
leader UAV results in higher energy consumption for the
leader UAV. Then, the follower UAV will re-select the leader
UAV based on its own position, the distance between itself
and the leader UAVs, and other factors. Consequently, the
energy consumption of the leader UAV continues fluctuating.
It is obvious that the energy consumption of leader UAV 1
decreases rapidly and the energy consumption of leader UAV
2 increases rapidly at time slot 5. This can be attributed to
the dynamic clustering, where a follower UAV changes its
leader UAV from leader UAV 1 to leader UAV 2, and thereby,
the leader UAV 2 has to consume more energy to charge the
follower UAV. The explanations of the energy consumption
of leader UAV 2 and 3 at time slot 15 and leader UAV 1
and 2 at time slot 28 are similar to those discussed above.
Meanwhile, the energy consumption of leader UAV 1 and 3 at
time slot 22 is double that in time slot 5, 15 and 28, indicating
that two follower UAVs change their leader UAV from leader
UAV 3 to leader UAV 1. All these outcomes are intended to
demonstrate that the RLDC algorithm is capable of achieving
dynamic clustering of UAV swarms.

Fig. 5 depicts all UAVs’ energy efficiency as the length of
time slot varies. It is evident that the energy efficiency of all
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Fig. 4. Comparison of leader UAVs’ energy consumption with varying time
slots.
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Fig. 5. Comparison of all UAVs’ energy efficiency with varying lengths of
time slot in fixed UAV swarm algorithm.

UAVs is zero due to the moving time exceeding the length of
time slot. As the length of time slot increases, more tasks can
be offloaded and processed by follower UAVs or leader UAVs
from IoT devices, improving the energy efficiency. However,
once all tasks have been processed, the UAVs remain in an idle
state and consume energy while hovering over the target region
until the time slot expires. Furthermore, the results demon-
strate that the proposed RLDC algorithm outperforms both the
fixed UAV swarm algorithm and no UAV swarm algorithm.
This superiority arises from several reasons: i) in cases where
the task requests from IoT devices are dynamically changing,
the fixed UAV swarm cannot dynamically cluster according to
the ever-changing task requests, and as a result, many tasks
cannot be processed; ii) the storage capacity of each UAV
is limited, and furthermore, UAVs are unable to delegate the
tasks that cannot be processed to other UAVs without UAV
swarm.

Fig. 6 examines all UAVs’ energy efficiency as the number
of IoT devices varies. Obviously, the energy efficiency of
all UAVs exhibits a monotonically increasing trend with the
increasing number of IoT devices. This can be attributed
to the generation of more task requests by IoT devices as
their quantity grows. Furthermore, the results demonstrate that
the proposed RLDC algorithm surpasses both the fixed UAV
swarm and no UAV swarm algorithms, which is consistent
with the discussion in Fig. 5.

Fig. 7 illustrates all UAVs’ energy efficiency as the UAV
velocity varies. Obviously, the energy efficiency of all UAVs
initially increases and then decreases with the UAV velocity
increasing. Since as the velocity of UAVs increases, there
is a reduction in the time taken for movement. As a result,
UAVs have more time available for hovering and processing
tasks. The decrease in energy efficiency of all UAVs can be
attributed to two main factors: increased propulsion energy
consumption as velocity increases and insufficient tasks to be
processed. It is evident that the performance superiority of
the proposed RLDC algorithm over the other two algorithms,
which is consistent with the discussion in Fig. 5.

Fig. 8 demonstrates all UAVs’ energy efficiency with the
varying storage capacities of leader UAV. It can be observed
that the performance with small grid size 50m outperforms

that with 25m and 75m. The reason is that the length of
small grid 25m accommodates fewer IoT devices, leading to
decreased number of tasks processed by UAVs. In contrast,
while the length of small grid 75m may accommodate a
greater number of IoT devices, it also results in a substantial
increase in the energy consumption of all UAVs as the moving
distance of UAV swarm increases. Furthermore, the results
also indicate that all UAVs’ energy efficiency increases as the
storage capacity of leader UAV grows, which can be attributed
to the increased capability of processing various types of
applications.

Fig. 9 shows the average task processing latency with the
varying transmission power of follower UAVs. It can be seen
that the average task processing latency increases as the length
of small grid increases. This phenomenon can be attributed to
the longer length of small grid leading to the longer average
distance between leader UAVs and follower UAVs, which
results in longer average task delegation time. Moreover, the
average task processing latency consistently decreases with the
increasing transmission power of follower UAVs, which can
be attributed to higher transmission power leading to shorter
task delegation time.

Fig. 10 depicts the average task processing latency with
the varying computing capacities of leader UAV. It can be ob-
served that the average task processing latency increases as the
length of small grid increases. The explanation for this trend is
similar to those presented in Fig. 9. Furthermore, the average
task processing latency exhibits a monotonically decreasing
trend with the computing capacity of leader UAV increasing.
This trend can be attributed to the fact that as the computing
capacity of leader UAV increases, task processing time of of
leader UAV decreases, and the average task processing latency
decreases accordingly.

VII. CONCLUSION

In this paper, with the aim of maximizing the long-term
energy efficiency of the UAV swarm assisted MEC system, a
joint optimization problem of UAV swarm dynamic clustering
and scheduling is formulated. Considering the cooperation and
competition among intelligent UAVs as well as the environ-
ment uncertainty, the optimization problem is reformulated as
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Fig. 6. Comparison of all UAVs’ energy efficiency with varying numbers
of IoT devices in fixed UAV swarm algorithm.
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velocities in fixed UAV swarm algorithm.
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Fig. 8. Comparison of all UAVs’ energy efficiency with varying storage
capacities of leader UAV.
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Fig. 9. Comparison of average task processing latency with different
transmission power of follower UAV.
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Fig. 10. Comparison of average task processing latency with different
computing capacities.

a series of interconnected multi-agent stochastic games, and
theoretically prove the existence of the corresponding NE. Fur-
thermore, we propose a novel RLDC algorithm for obtaining
such an equilibrium. Simulation results show that, compared
to counterparts, the proposed RLDC algorithm significantly
increases the energy efficiency of the UAV swarm assisted
MEC system.
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APPENDIX

A. Proof of Lemma 1

According to [38], if any problem can be proved to be a
multi-period stage game, it always exists the NE. Therefore,
the key for proving the existence of NE is whether our
proposed problem is a multi-period stage game. First of all,
by the formulation of utility functions and corresponding
strategies in Section III, our proposed problem can be defined
as a stochastic game, which is a generalized form of repeated
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game involving various state transition probabilities [39].
Furthermore, it is well known that any repeated game can
be seen as a series of multiple stage games. Consequently, we
can conclude that our proposed problem is a stochastic game
consisting of a set of multiple stage games, each characterized
by distinct stage transition probabilities, and is equivalent
to the multi-period stage game [40]. In order to clearly
express such NE in our specifically considered problem (as
we just described), we introduce Definition 2 (i.e., the multi-
UAV stage game expression) and Definition 3 (i.e., the NE
expression) as follows:

Definition 2: A multi-UAV stage game can be defined as
(Υ̃1, Υ̃2, ..., Υ̃M ) [39], where Υ̃m denotes the reward of leader
UAV m ∈ M over the joint action space [39]. Thus, Υ̃m is:

Υ̃m = {rm(t)(a1(t), a2(t), ..., aM (t))|am(t) ∈ Am}. (18)

Definition 3: Let ϑER
−m represent the product of all leader

UAVs’ policies except the leader UAV m ∈ M, ϑER
−m ≡

πER
1 , ..., πER

m−1 · πER
m+1, ..., π

ER
M . Thus, in the multi-UAV stage

game (Υ̃ER
1 , Υ̃ER

2 , ..., Υ̃ER
M ), the NE consists of a joint policy

{πER
1 , πER

2 , ..., πER
U }, when the inequality is satisfied [39]:

πER
m ϑER

−mΥ̃ER
m ≥ πER

m ϑER
−mΥ̃ER

m ,∀m ∈ M,∀πm ∈ πm.
(19)

In Definition 3, the NE consists of a set of policies
{πER

1 , πER
2 , ..., πER

U }, when the policy πER
m of the leader

UAV m ∈ M can maximize its utility function. Hence,
we can infer that πER∗

m ϑER∗
−m Υ̃ER

m ≥ πER
m ϑER∗

−m Υ̃ER
m , and

{πER∗
1 , πER∗

2 , ..., πER∗
M } forms the NE, where πER∗

m is the
optimal policy of leader UAV m ∈ M. In addition, it is worth
noting that, in our paper, the utility function is defined as
the expected discounted reward function. If an NE is reached,
every leader UAV m ∈ M will choose to take the NE strategy
and will not unilaterally deviate from the NE, thereby ensuring
that the utility function QER

m (sER,aER, πER
m ) remains unal-

tered, and consequently, the reward remains unchanged [27].

B. Proof of Lemma 2

At time slot t, the iteration process of the RLDC algo-
rithm for a given state-action pair (sER,aER) can be repre-
sented by {QER

m (sER,aER, t+ 1)}, which can be written as
Q

ER
(sER,aER, t) = 1

M

∑M
m=1 Q

ER
m (sER,aER, t),∀t ≥ 0.

In this proof, the action and state within the bracket are
omitted for conciseness, i.e., Qt

m = QER
m (sER,aER, t), Q

t
=

Q
ER

(sER,aER, t), rtm = rm(sER,aER, sER′
, t), and Qt′

m =
QER

m (sER′
,aER′

, t). According to the equation above, we can
obtain:

Q
t+1

= (1−νt)Q
t
+

νt

M

∑M

m=1
(Rt

m+σmaxaER′∈AER Qt′

m).

(20)
By deducting Q∗ from both sides of equation (20), we have:

Q
t+1 −Q∗ = (1− νt)(Q

t −Q∗) + νt( 1
M

∑M
m=1(Rt

m

+σmaxaER′∈AER Qt′

m)−Q∗).
(21)

It is important to highlight that the temporal difference
algorithm, as discussed in (21), can be viewed as a stochastic
process outlined in Lemma 1 with △t+1 = Q

t − Q∗,

Φt = 1
M

∑M
m=1(Rt

m + σ max
aER′∈AER

Qt′

m) − Q∗ and νt = ηt.

Consequently, the condition 1) and 2) in Lemma 1 are satisfied.
To meet the requirements of the condition 3) and 4) in Lemma
1, we provide the proof of the temporal difference algorithm
in equation (21).

Based on Proposition 5.1 in [34], operator F(·) can be
considered as a contraction mapping, and Q∗ represents the
sole fixed point of F(·). The expression for F(·) is:

F(Q) =
∑

sER′∈SER

PER
sERsER′ (aER)( 1

M

M∑
m=1

Rt
m(sER,aER, sER′

)

+σ max
aER′∈AER

Q(sER′
,aER′

)).

(22)
Thus, we have F(Q∗) = Q∗ and ||F(Q1(s

ER,aER))
− F(Q2(s

ER,aER))||∞ = ||Q1(s
ER,aER) −

Q2(s
ER,aER)||∞. This further gives E{Φt} =∑

sER′∈SER

PER
sERsER′ (aER)( 1

M

M∑
m=1

Rt
m + σ max

aER′∈AER
Q

t′ −

Q∗) = F(Q
t
) − Q∗. Then, we have ||E{Φt}||∞ =

||F(Q
t
) − F(Q∗)||∞ ≤ σ||Qt − Q∗||∞ based on the

properties of a contraction mapping, replacing || · ||∞
with || · ||W satisfies the condition 3) in Lemma 1.
With respect to the condition 4) in Lemma 1, we can

obtain E{Φt} =
∑

sER′∈SER

PER
sERsER′ (aER)( 1

M

M∑
m=1

rm +

σ max
aER′∈AER

Q
t′ − Q∗) = F(Q

t
) − Q∗, by which

V ar{Φt} ≤ Λ(1 + ||Qt − Q∗||2W ) can be rigorously
proved for a given constant Λ owing to the fact that
1
M

∑M
m=1 r

t
m is bounded [41]. Therefore, the condition 4) in

Lemma 2 is satisfied. The proof of Lemma 2 is completed,
and thus we have P(limt→∞Q(sER,aERπER

m , t) =
QER∗

(sER,aER, πER
m )) = 1.

C. Proof of Theorem 1
Similar to Lemma 2, the action and state within the bracket

are excluded in this proof.
Considering that the Q value of state-action pair (sER,aER)

is updated if and only if the joint action aER occurs at
state sER, we represent the sequence of updating state-action
pairs as {j},∀j ≥ 0 in the ER learner. Hence, we have:
Qj+1 = (WM − ηjL − νjWM )Qj + νj(Rj + V j), where
Qj+1 = (Qj+1

1 , ..., Qj+1
m )⊤, and WM is the M ×M identity

matrix. Then, we can obtain Rj = (Rj
1, ...,R

j
M )⊤ and

V j = (σ max
aER′∈AER

Qj′

1 , ..., σ max
aER′∈AER

Qj′

M )⊤. Furthermore,

we can obtain: Qj+1 −Q
j+1

= (WM − ηjL− νjYM )(Qj −
Q

j
)+νj(R̂j+ V̂ j), where the M -dimensional column vector

of ones is denoted as 1M . Then we have Q
j

= Q
j1M .

Additionally, we can derive R̂j = (WM−( 1
M )1M (1M )⊤)Rj

and V̂ j = (WM − ( 1
M )1M (1M )⊤)V j . Hence, we obtain:

||Qj+1 −Q
j+1|| =

||(WM − ηjL − νjWM )Qj −Q
j+1||+ ||νj(Rj + V j)||

(ϱ)

≤ (1−Xj + νj)||Qj −Q
j ||+ νj(||R̂j ||+ ||V̂ j ||),

(23)
where the value of (ϱ) is determined according to Lemma
4.4 in [42] while Xj → 0 as j → ∞ with Xj ∈ [0, 1]. As
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νj → 0 when j → ∞, it follows that (1 −Xj + νj) → 0 as
well. Consequently, we can conclude that P(limt→∞||Qj −
Q

j || = 0) = 1. Namely, P(limt→∞QER
m (sER,aER) =

Q
ER

m (sER,aER)) = 1,∀m ∈ M, sER ∈ SER,aER ∈ AER.
Additionally, according to Lemma 2, we have

P(limt→∞Q
ER

m (sER,aER) = QER∗

m (sER,aER)) = 1.
Hence, we can obtain P(limt→∞QER

m (sER,aER) =
QER∗

m (sER,aER)) = 1, and this completes the proof of
Theorem 1.
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